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Abstract

This thesis presents a comprehensive study of the event reconstruction for the
NuDoubt++ experiment, a novel experiment aimed at measuring neutrinoless dou-
ble beta decay. The detector leverages advanced scintillator technologies—opaque
and hybrid scintillators—to achieve low background interference and high energy
resolution. The design features a cylindrical tank filled with a scintillator, inter-
sected by a dense grid of wavelength-shifting fibers for effective scintillation light
readout.
A simulation of the opaque scintillator part of the detector as well as a recon-
struction is developed. It is investigated how different arrangements of the fibers
influence the performance. With the developed reconstruction positional reso-
lution better than 1 mm is achieved. For the photon number resolution, 4 % at
photon numbers corresponding to a particle energy of 1 MeV is reached. Addi-
tionally, the background discrimination potential using the hybrid scintillator is
analyzed. There, it is taken advantage of the fact, that different particles create
different ratios of Cherenkov and scintillation light. This can be used to identify
particle events and discriminate background especially relevant for the search
of the rare neutrinoless double beta decay. High discrimination potential for
double positron decay modes has been found, demonstrating the potential of the
NuDoubt++ experiment.
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Introduction 1
Neutrinos, electrical neutral particles with tiny masses, play a fundamental role
in the Standard Model of particle physics and our understanding of the universe.
Though they have a high abundance, neutrinos are extremely challenging to de-
tect due to their rare interactions with matter. Their elusive nature has driven
extensive research aimed at uncovering their properties. One of the most intrigu-
ing phenomena in neutrino physics is the search for neutrinoless double beta
decay. If this hypothetical process is observed, it would have profound implica-
tions for our understanding of particle physics. It would not only confirm the
Majorana nature of neutrinos — suggesting that neutrinos are their own antipar-
ticles — but also provide insights into the absolute scale of neutrino masses [1].
The discovery of neutrinoless double beta decay would significantly enhance our
understanding of lepton number conservation and provide important clues about
the matter-antimatter asymmetry in the universe.

Limits on the order of 1026 years for the lower half-life of neutrinoless double beta
minus decays has been achieved for several isotopes by Current double beta decay
experiments [2–4]. However, to probe the effective Majorana neutrino mass scale
these limits need to be extended by several orders of magnitude. The NuDoubt++

experiment aims to explore the less investigated double beta plus decay modes,
which are expected to have even longer half-lives due to their lower available
kinetic energy and the repulsive Coulomb force between positrons and the nucleus.
Additionally, NuDoubt++ aims to achieve a measurement of the two-neutrino
mode of double beta plus decay involving positron emission, a process predicted
by the Standard Model but not yet observed. This decay mode, which involves the
emission of two neutrinos alongside the beta plus decay, would provide valuable
confirmation of neutrino properties and interactions. Successfully detecting this
decay mode would validate current models and provide a deeper understanding
of the fundamental symmetries and conservation laws in particle physics.

NuDoubt++ is set to combine two novel liquid scintillator technologies: opaque
scintillators, which can provide sub-centimeter-scale event topology information,
and hybrid scintillators, which allow for the measurement of the ratio between
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Cherenkov and scintillation signals. This dual approach enhances background
discrimination capabilities compared to traditional organic scintillators and fa-
cilitates heavy isotope loading with minimal impact on scintillation output and
energy resolution. For effective light collection, optimized wavelength-shifting
fibers (OWL-fibers) are deployed in the detector.

This thesis concentrates on the event reconstruction of position and energy within
the NuDoubt++ detector and examines the influence of various scintillator and
detector design properties on the reconstruction performance. To achieve this, a
simplified detector simulation has been developed. Additionally, this thesis focuses
on background discrimination strategies using the hybrid scintillator.

An overview of current knowledge about neutrinos is provided in the next chapter
(Chapter 2), along with a detailed discussion on double beta decay, followed by
a brief section on event reconstruction methods. The NuDoubt++ experiment is
then described in Chapter 3, with emphasis on the opaque and hybrid scintillator
technologies. A theoretical mode based on random walk is introduced in Chapter 4,
followed by results on reconstruction performance for various detector configura-
tions. Subsequently, the strategy for background discrimination based on the ratio
of Cherenkov and scintillation light is discussed Chapter 5, with discrimination
factors obtained from simulations.
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Theory 2
This chapter offers a concise overview of the historical trajectory of neutrino
physics. Additionally, neutrinoless double beta decay is presented in Section 2.2, an
elusive process yet to be observed. Furthermore, event reconstruction is discussed
in Section 2.3, providing insights into the data analysis technique used later on.

2.1 Neutrino history

The existence of neutrinos was first postulated by Wolfgang Pauli in 1931 to ac-
count for the continuous spectrum observed for the electrons emitted during
β-decays [5]. In a hypothetical scenario where only two particles - electron and
proton - are the product of a β-decay, the emitted electron would possess only
a discrete energy due to the conservation laws of energy, momentum, and spin.
The observation of a continuous spectrum led to the prediction of a third, un-
charged particle, which is known as the neutrino today. Enrico Fermi developed
the first theory incorporating neutrinos into β-decay processes in 1933 [6]. Ex-
perimental confirmation of the electron anti-neutrino’s existence came in 1956
through the work of F. Reines and C. L. Cowan, who utilized the flux from a nuclear
reactor [7]. Subsequent experiments conducted by L. Lederman, M. Schwartz,
and J. Steinberger in 1962 at the Alternating Gradient Synchrotron located at the
Brookhaven National Lab confirmed the existence of another type of neutrino,
the muon neutrino [8]. This discovery established the presence of two distinct
types of neutrinos, each interacting separately with their corresponding charged
leptons. In 1989, measurements of the width of the Z0 resonance by experiments
at the Large Electron-Positron Collider (LEP) established that the total number
of neutrino flavors participating in weak interactions, with masses ≲ 45.6 GeV
(half the mass of the Z0 boson), was three [9–11]. However, this does not preclude
the existence of additional sterile neutrinos, which do not participate in weak
interactions. Finally, the tau-neutrino, the third neutrino type, was detected by
the DONUT experiment in 2000 [12].
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Fig. 2.1: The Standard Model of elementary particles [13].

Neutrinos belong to the lepton family of particles in the Standard Model (SM)
of particle Physics (see Figure 2.1). As leptons, they are fermions with a spin of
1
2 . Additionally, neutrinos have no charge and thus only interact weakly. Inside
the Standard Model, neutrinos are assumed to be massless. This assumption
has been disproved by the discovery of neutrinos oscillations. Neutrinos exhibit
flavor oscillations, a phenomenon in which they switch between different flavor
states as they propagate through space. The concept of neutrino oscillations
was proposed by B. Pontecorvo in 1957 [14, 15], with the formalism of mixing
between mass and flavor eigenstates introduced by Z. Maki, M. Nakagawa, and
S. Sakata in 1962 [16]. The mixing between the different states is described with
the PMNS matrix, which contains the mixing angles θij between the states and a
single phase angle called δCP related to charge-parity violations. Experimental
evidence for neutrino oscillations emerged from solar and atmospheric neutrino
experiments. The Homestake experiment [17] in 1968, led by R. Davis, measured
solar neutrinos for the first time, revealing a flux significantly lower than predicted
by the standard solar model [18]. The discrepancy was confirmed by different
experiments afterwards [19–22]. Similar anomalies were observed in atmospheric
neutrinos by experiments such as Kamiokande and MARCO starting in the 1980s
[23–26]. The Super-Kamiokande experiment provided clear evidence of neutrino
oscillations in atmospheric neutrinos in 1997 [27]. Neutrino oscillations have been

2.1 Neutrino history 4



extensively studied in various experiments, leading to precise measurements of
mixing angles and mass squared differences ∆m2

ij = m2
i −m2

j . The sign of ∆m2
21

is known to be positive, while the sign of ∆m2
31 is not yet established, leaving

open two possibilities, normal ordering (NO) or inverted ordering (IO) [28]. The
first hints of CP violation have been reported: there is a preference for large CP
violation, although CP conservation is still allowed at 3σ for NO. The discovery
of neutrino oscillations established that neutrinos possess mass, challenging the
assumption of mass-less neutrinos in the Standard Model. To this day, the neutrino
mass remains unknown, with only upper limits established [29].

In 1937, E. Majorana proposed the Majorana nature of neutrinos, suggesting that
neutrinos could be their own antiparticles. Unlike charged fermions, which are
typically Dirac particles and carry U(1) quantum numbers such as electric charge,
Majorana fermions do not carry these quantum numbers. If neutrinos are Majo-
rana particles, this could lead to violations of lepton number conservation. The
distinction between Majorana and Dirac neutrinos is crucial for understanding
fundamental symmetries in nature. Neutrino oscillations do not distinguish be-
tween Majorana and Dirac particles, as they do not inherently violate lepton
number conservation. To determine whether neutrinos are Majorana or Dirac
particles, a process is needed that allows for lepton number violation. The most
sensitive process is neutrinoless double-beta (0νββ) decay, which experimentally
tests lepton number violation and if neutrinos are Majorana particles.

2.2 Double beta decay

Double beta decay (ββ) is a rare nuclear process wherein the nucleus undergoes
a transformation, changing its charge Z by two units while the total number of
nucleons A is conserved. It was first introduced by M. Goeppert-Mayer in 1935 [30].
Double beta decay can be the only observable decay mode for certain isotopes,
where single β transitions are energetically suppressed or forbidden. Because of
the nuclear pairing interaction, nuclei with even numbers of protons and neutrons
are more stable than those with odd numbers. Consequently, even-even nuclei can
be more tightly bound than their odd-odd counterparts, in which they would decay
with a single β transition, but decays into a less bound isotope are energetically
suppressed. These nuclei then can decay via double beta decay into the next
even-even nuclei, which are more strongly bound (see Figure 2.2). Alternatively,
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Fig. 2.2: Mass parabolas of nuclear isobars with even A. Due to the attractive nu-
clear pairing interaction, single beta transitions (β) of even-even nuclei to
their odd-odd isobaric neighbor can be energetically forbidden, whereas
in a second-order process, double beta decay (ββ) is allowed [32].

single beta decays may be suppressed due to significant disparities in total angular
momentum between the initial and final nuclei, resulting in comparable rates for
single beta and double beta transitions [31].

Double beta decay occurs via weak interaction and is characterized by exception-
ally long half-lives due to its second-order nature. There are two distinct types of
double beta decays: the SM two neutrino decay (2ν), in which two neutrinos or
antineutrinos are emitted in the final state, and the neutrinoless decay (0ν), where
no neutrinos are emitted.

Double beta decay can occur in various modes, including β−β−, β+β+, electron
capture with positron emission (ECβ+) and double electron capture (ECEC). The
corresponding decay expressions for the 2ν-mode are outlined in equations (2.1)
to (2.4).

2νβ−β− : (A,Z) → (A,Z + 2) + 2e− + 2ν (2.1)
2νβ+β+ : (A,Z) → (A,Z − 2) + 2e+ + 2ν (2.2)
2νECβ+ : (A,Z) + e− → (A,Z − 2) + e+ + 2ν (2.3)
2νECEC : (A,Z) + 2e− → (A,Z − 2) + 2ν . (2.4)

As an example, the Feynman diagram of 2νβ−β− is shown in Figure 2.3a. These

2.2 Double beta decay 6



(a) 2νβ−β− (b) 0νβ−β−

Fig. 2.3: Feynman diagrams of the (a) SM 2νβ−β− decay and (b) the lepton number
non-conserving 0νβ−β− decay in the light-neutrino exchange scenario.

decays can also occur in a neutrinoless mode (0ν), where no neutrinos are emitted.
For example, the expression for neutrinoless for neutrinoless double beta minus
decay is:

0νβ−β− : (A,Z) → (A,Z + 2) + 2e−. (2.5)

In 0νββ decay the final state is composed of the nuclear recoil and the two electrons
or positrons. In case of β+β+ the two positrons will annihilate emitting two pairs
of 511 keV gamma rays, which is a valuable signature for experiments. Because the
electron mass is significantly smaller than that of the daughter nucleus - by several
orders of magnitude - the energy transferred to the nucleus during the decay is
negligible, resulting in minimal nuclear recoil. Thus, the sum of the electron (or
positron) energies is practically equivalent to the Q-value Qββ of the decay.

In the two-neutrino decay, the final state includes the nuclear recoil, two electrons
(or positrons) and two antineutrinos (or neutrinos). Because neutrinos have a
very low interaction cross-section, they escape undetected. Hence, the sum of the
energy of the leptons (electrons or positrons) in this process is less than or equal
to the Q-value of the double beta decay, resulting in a continuous energy spectrum
from 0 to Qββ . In contrast, for the neutrinoless decay mode the total energy of
the emitted leptons should be approximately equal to the Q-value, forming a
distinct peak at Qββ , as shown in 2.4. This peak allows for potential detection of
neutrinoless double beta decay, provided the experimental setup has sufficiently
good energy resolution to accurately detect and resolve this peak.

The two neutrino decay modes are well-described by the Standard Model and
2νβ−β− has been experimentally observed in several isotopes, typically with half-
lives on the order of 1019 to 1021 years [33]. The decay modes characterized by

2.2 Double beta decay 7



Fig. 2.4: Theoretical spectra of 2νββ and 0νββ decays with 1.5 % energy resolution
(FWHM). The relative normalization is for illustrative purpose only [32].

decreasing charge exhibit significantly longer half-lives due to the reduced ki-
netic energy available. Additionally, in positron-emitting modes, the half-lives are
prolonged by the Coulomb repulsion experienced by positrons from the nucleus.
Notably, among these decay modes, only the 2νECEC decay has been experimen-
tally confirmed in isotopes such as 130Ba [34], 78Kr [35] and 124Xe [3]. The limited
exploration of these modes arises from smaller phase space factors leading to
suppressed decay probabilities, less favorable decay Q-values, and low natural
abundances of suitable candidate nuclei [36].

However, neutrinoless double beta decay modes have yet to be observed. These
modes, violating total lepton number conservation, would signify the Majorana
nature of neutrinos and provide crucial insights into physics beyond the Standard
Model [37]. In the simplest and most studied case, in which massive neutrinos
are added to the SM and assumed to be Majorana particles, the 0νββ decay can
happen via the exchange of a light Majorana neutrino. This is the so-called light-
neutrino exchange scenario. The Feynman diagram for the 0νβ−β− decay in the
light-neutrino exchange scenario is shown in Figure 2.3b. In addition, several
other theoretical models have been proposed to explain potential mechanisms for
neutrinoless double beta decay [32].

The half-lives of neutrinoless double beta decay modes are anticipated to be
significantly longer, typically ranging from 3 to 5 orders of magnitude higher
than those of the corresponding two-neutrino decay modes. Conversely, decay
modes involving positron emission are expected to exhibit an even larger half-life
compared to the 0νβ−β− mode. The rate of neutrinoless double electron capture
(0νECEC) may be notably enhanced due to resonance effects [38–40]. This decay

2.2 Double beta decay 8



is therefore considered to have great potential for the discovery of the Majorana
mass of neutrinos.

2.3 Parameter reconstruction

In particle experiments, measurements x⃗ are obtained from the detector system.
From these measurements the properties of the underlying physical events need to
be inferred. To accomplish this, the properties of the event has to be described by a
model using a set of parameters θ. This model should describe how the parameters
θ relate to the observed data x. For instance, a parameter might represent the
spatial coordinates of a particle’s interaction within the detector or the energy of
the particle.
The goal of reconstruction or parameter estimation is to determine the most likely
values for the parameters θ given the measurement x.

2.3.1 Maximum likelihood estimation

One common approach for this purpose is the maximum likelihood estimation
(MLE). The basic idea of the concept goes back to Ronald Fisher [41, 42]. In MLE, a
likelihood function is constructed to quantify how likely the observation of data x

for different values of the parameters θ is. This likelihood function L(θ|x) estab-
lishes the connection between the observed data and the model parameters via
probability distributions. Assuming that p(x|θ) is the probability density function
(PDF) for observing a specific value of x given θ, the likelihood for a measurement
x1 is then L(θ|x1) = p(x1|θ). For N measurements x⃗ = (x1,x2, ...,xN ) the likelihood
is calculated by the product of the individual probabilities

L(θ|x⃗) =
N∏
i=1

p(xi|θ). (2.6)

To find the optimal values of the model parameters θopt, L(θ|x⃗) has to be maximized
with respect to θ. Unlike p(x|θ), the likelihood L(θ|x⃗) is no longer a PDF since it
is not normalized. As the values of L are usually very small, it is common to
use the logarithm of the likelihood L = ln(L) to ensure numerical stability. The

2.3 Parameter reconstruction 9



log-likelihood is sometimes denoted as LLH . Additionally, instead of maximizing
L minimizing -L can be preferred.

The fundamental principle behind maximum likelihood estimation is that the
correct likelihood function contains all the information which can be extracted
from the measurement data [43]. This means that if the likelihood function is
correctly specified, it effectively captures all relevant information for parameter
estimation. Accordingly, maximizing this function with respect to the parameters
θ yields the best-fit values that maximize the probability of observing the given
data. It is important to note that the parameters obtained through MLE are the
most probable given the information provided by the detector, but they do most
of the times not correspond to the true parameters characterizing the underlying
physical event.

2.3.2 Chi-squared minimization

In addition to Maximum Likelihood Estimation (MLE), another widely used ap-
proach for parameter estimation is fitting a model to data by minimizing the sum
of squared differences between the observed data and the model predictions.
When fitting a model to data, the goal is to determine the set of parameters θ that
best describe the relationship between the observed measurements x⃗ and the
underlying model. Suppose we have a model function f(x|θ) that predicts the
expected value of the observations based on the parameters. The task is then to
find the parameters θ that minimize the difference between the observed data
xobsi and the model predictions xpredi .

If the uncertainties of the predictions are denoted by σi for each measurement,
the chi-squared χ2 for N measurements is defined as:

χ2(θ) =

N∑
i=1

(
xobsi − xpredi (θ)

σi

)2

. (2.7)

Minimizing the chi-squared value with respect to θ yields the best-fit parameters,
θopt, that minimize the discrepancy between the observed data and the model
predictions, taking into account the uncertainty of the predictions.

The goodness of fit can also be assessed using the reduced chi-squared (χ2
red), which

is the chi-squared divided by the degrees of freedom (DoF). The degrees of freedom
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are given by the number of data points N minus the number of fitted parameters
p:

χ2
red =

χ2(θ)

N − p
. (2.8)

A reduced chi-squared value close to 1 indicates a good fit, whereas values signif-
icantly greater than 1 or much less than 1 suggest that the model may not be a
good fit to the data or that the uncertainties have been incorrectly estimated.

2.3 Parameter reconstruction 11



NuDoubt++ 3
NuDoubt++ is a new experiment designed to explore the double beta decay modes
including positron emission (2νβ+β+, 2νβ+EC, 0νβ+β+ and 0νβ+EC) [44]. The
detector will use the novel hybrid and opaque scintillator technologies, aiming to
achieve a high sensitivity in the measurement of neutrinoless double beta decay
processes.

The detector technology is explained with a focus on the hybrid and opaque
scintillator technology in Section 3.1 as well as a short section about the OWL-fibers
(Section 3.2). The planned detector design is presented in Section 3.3, followed by a
discussion about the double beta isotopes suitable for the experiment. Section 3.5
gives a short overview of the background sources relevant in the search for double
beta decay.

3.1 Liquid scintillator

It is distinguished between two kinds of scintillators: organic and inorganic scintil-
lators. The scintillation process in inorganic materials is due to the electronic band
structure found in crystals and is not molecular in nature as is the case with organic
scintillators. Liquid scintillators are a special case of organic scintillators, where
the scintillating material is dissolved in an organic solvent. The main objective of
a scintillator is the conversion of the kinetic energy of an incoming particle into
detectable light. The scintillation light is caused by the ionization of the scintillator
molecules by the incident particle. This happens directly for charged particles
as electrons or muons or indirectly for neutrinos, gammas or neutrons. In this
case, the incoming particle transfers energy to the charged particles inside the
scintillator, which then ionize the scintillator molecules. As the excited electrons
return to their ground state (de-excitation), they release the excess energy in the
form of photons.
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In a scintillator molecule, each electronic energy state consists of multiple vibra-
tional sub-states, which have much smaller energy differences compared to the
electronic states. Excitation typically occurs from the vibrational ground state
of the electronic ground state to an excited vibrational state of an excited elec-
tronic state. Vibrational states de-excite non-radiatively on a very short time scale,
around 10−12 s, which is much faster than the de-excitation of the electronic states.
The time scale for electronic de-excitation depends on whether the excited elec-
tronic state is a singlet (spin quantum number of zero) or a triplet (spin quantum
number of one). For singlet states, typical decay times range from a few to tens
of nanoseconds (fluorescence). For triplet states, decay times are much longer,
often milliseconds or more (phosphorescence), due to the involvement of two
excited molecules in the triplet annihilation reaction [45]. The decay of excited
electronic states in a scintillator can be modeled by two (or more) exponential
decay components:

N(t) = Ap exp

(
− t

τp

)
+Ad exp

(
− t

τd

)
. (3.1)

Here, τf and τs are the time constants for the prompt and delayed decay com-
ponents, respectively. Ap and Ad represent the relative contributions of these
components. t denotes time, and N(t) is the number of photons produced as a
function of time. The time constants for these processes are usually on the order
of a few nanoseconds [46, 47]. Additional exponential decay components may be
included to account for triplet states. Organic scintillators generally exhibit faster
decay times compared to inorganic scintillators, which typically have decay times
around 100 nanoseconds [48].

The light yield of a scintillator describes the number of scintillation photons pro-
duced based on the incident energy. Ideally, the energy emitted as scintillation
light is proportional to the particle energy. Typically, between 3 % to 12 % of the
energy is converted to scintillation light leading to a light yield of approximately
104 photons per MeV. However, in a more realistic scenario, particle- and energy-
dependent losses of scintillation light occur, resulting in a non-linear relationship
between the incoming energy and the scintillation light. The primary cause of this
non-linearity is ionization quenching. This occurs because the density of ionized
and excited molecules is high, leading to significant interactions between them.
Quenching is more pronounced when the energy loss per unit path length dE/dx is
large, such as at low energies towards the end of a particle track. Furthermore, the
quenching effect is stronger for heavy particles. Birks’ law provides an empirical

3.1 Liquid scintillator 13



equation to describe the light yield per unit path length as a function of the energy
loss per unit path length, accounting for ionization quenching [49]:

dL

dx
= S

dE
dx

1 + kB
dE
dx

. (3.2)

Here, dL is the light produced by a particle along a path of length dx, S is the light
yield constant, and kB is Birks’ quenching factor. For electrons, typical values are
around 0.01 to 0.03 cm/MeV [50].

Liquid organic scintillators are made of one or more solvents, a fluor as solute and
in most cases a wavelength shifter. When there is only one solvent, a major part
of the fluorescent radiation is self-absorbed because the emission and absorption
spectra overlap in a wide range. To prevent self-absorption, fluors are added. The
absorption spectrum of the fluor shows a significant overlap with the emission
spectrum of the solvent. So in total the emission spectrum is shifted to higher
wavelengths. Ideally, the shift allows a more transparent region of the scintillator
to be reached. Wavelength shifters are sometimes added to match the spectral
sensitivity range of a readout device, e.g. a PMT. A wavelength shifter absorbs
photons of a certain wave length and re-emits them at a larger wavelength.

Liquid scintillators are particularly suited for the detection of low-energy neutrinos
due to its low energy threshold and high light yield, which leads to a good energy
resolution. Other advantages are a high radio purity and its ability to cover large
volumes at reasonable costs [45]. In recent years, novel ideas in the field of
liquid scintillator technology emerged – most prominently opaque and hybrid
scintillators – which add unprecedented particle discrimination power at MeV-
scale to the list of their advantages [51].

3.1.1 Opaque scintillator

Opaque scintillators represent a novel advancement in scintillator technology,
offering advantages over traditional transparent liquid scintillators. By incorporat-
ing additives like wax into transparent scintillator materials, opaque scintillators
achieve comparable high light yields while introducing benefits in spatial resolu-
tion, absorption properties and particle identification capabilities [52].

The characteristic of an opaque scintillator is the short scattering length, typically
in the order of a few millimeters, which effectively confines scintillation light
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(a) Electron (b) Gamma (c) Positron

Fig. 3.1: Simulation of the pattern of different particles in an opaque scintillator
equipped with optical fibers. The illustration is shown in the x-y-plane,
with the fibers aligned parallel to the z-axis. Green lines trace the trajec-
tories of scintillation photons, while yellow lines represent the paths of
gammas.

through multiple Mie-scatterings of photons [53]. The light can then be collected
close to the interaction of ionizing particles using optical fibers. This leads to an
enhanced spatial resolution. Moreover, the reduced constraints on absorption
properties as the light travels only a short distance to the fibers enable high load-
ing in the scintillator offering flexibility in experimental setups. One of the most
significant advantages of opaque scintillators is their ability to provide detailed
topological information about the interaction within the detector. Unlike trans-
parent scintillators, where light collection occurs at a larger distance from the
interaction point, opaque scintillators allow for close light readout, preserving the
energy deposition patterns of ionizing particles.

For instance, an electron produces a distinct, compact energy deposition pattern
due to its short ionization path within the medium, appearing as a singular "blob"
(bulky light object) in the detector. The typical size of such a blob is only a few
centimeters. Conversely, gammas undergo multiple Compton-scatterings, resulting
in a series of energy depositions along with a final photoelectric effect. Positrons,
mimicking the behavior of both electrons and gammas, leave a trail of ionization
similar to electrons before annihilating and emitting two back-to-back gammas
with an energy of 511 keV. Each of the gammas produce then the characteristic
Compton-scatter pattern. A simulation of the different topological patterns is
shown in Figure 3.1.
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Fig. 3.2: Formation of a Cherenkov light cone if the charged particle travels faster
than the medium speed of light. The picture is taken from [55].

3.1.2 Hybrid scintillator

When a charged particle traverses a dielectric medium, such as a scintillator, at a
velocity greater than the speed of light in that medium, Cherenkov radiation is
emitted [54]. The speed of light in a medium cm is given by

cm =
c

n
, (3.3)

where c is the vacuum speed of light and n the refraction index of the medium. As n
is always larger than 1, the speed of light in the medium never exceeds the vacuum
speed of light. In general, the refraction index is depending on the wavelength
n(λ).

On its way through a medium, the charged particle polarizes the atoms of the
dielectric medium. If the velocity of the particle is faster than cm, the polarization is
asymmetric as the atoms cannot rearrange fast enough. During the depolarization
of the atoms, electromagnetic waves are emitted. The constructive interference of
these waves results in the formation of a distinctive cone of Cherenkov light, as
illustrated in Figure 3.2.

The emission angle θ of the Cherenkov radiation relative to the direction of the
charged particle is determined by

cos(θ) =
1

βn
(3.4)
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with β =
vp
c , where vp is the velocity of the charged particle. The number of

emitted photons N per path length ∂x and wavelength ∂λ can be calculated with
the Frank-Tamm formula [56]:

∂2N

∂x∂λ
=

2παZ2

λ2

(
1− 1

(βn(λ))2

)
. (3.5)

Here α denotes the fine-structure constant and Z the electric charge of the parti-
cle.

This leads to a different amount of produced Cherenkov light for different charged
particles. Hybrid scintillators exploit this feature as particles or event types are
discriminated based on the ratio of Cherenkov and scintillation light (C/S) [57].
For instance, electrons with sufficient high kinetic energy produce Cherenkov light.
For a scintillator with a refraction index of n = 1.48, the kinetic energy threshold
for an electron is Eth ≈ 0.2 MeV. In contrast, gammas produce less Cherenkov light
as they are uncharged and only deposit small amount of energies to electrons
by Compton-scattering. For annihilation gammas with an energy of 511 keV, the
energy of these electrons is too small to produce Cherenkov radiation, but higher
energetic gammas can produce small amounts of Cherenkov light. Furthermore,
positrons, while capable of producing Cherenkov light, exhibit a different ratio
compared to electrons due to their annihilation resulting in the release of two
gammas. These gammas do not produce Cherenkov light. For the same amount of
scintillation light, positrons have a lower amount of Cherenkov light, because the
kinetic energy of the positron is much lower than the one of the electron, as the
total energy also includes the gammas.

Additionally, the combination of opaque and hybrid scintillator provides another
method for background discrimination based on the blob-dependent Cherenkov
scintillation ratio instead of the particle-dependent ratio explained before. This
can be used to distinguish, e.g. a beta plus decay from a beta minus decay with
simultaneous emission of a high energy gamma-ray from the de-excitation of
the decay nucleus. The positron features a single blob with high Cherenkov to
scintillation ratio from the ionization trail in the center of the chain blobs, as
the annihilation gammas with no Cherenkov light are emitted back-to-back. In
contrast, the simultaneous electron and gamma ray event features the blob with a
high ratio at the beginning of the blob chain from the gamma ray.

There are several approaches for realizing a hybrid scintillator. The method
planned for usage in NuDoubt++ is the slow hybrid approach, which uses intrin-
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sically slow fluors and solvents for the scintillator [58]. The scintillation light is
strongly delayed such that the small peak of Cherenkov light becomes visible at
the beginning of the light emission.

3.2 OWL-fibers

The collection of the scattered scintillation light will be done with a dense grid
of wavelength-shifting fibers. In NuDoubt++ new optimized fibers (OWL-fibers)
based on novel wavelength-shifting modules (WOMs) developed for the IceCube-
Upgrade [59] will be used, where the fiber is coated with the wavelength-shifter on
the outside. Photons which hit the fiber are then absorbed from the wavelength-
shifter and isotropically re-emitted at a higher wavelength. Photons which fulfill
the condition for total internal reflection in the fiber will be guided to the ends,
where they will be detected by SiPMs. Shifting the emission point of the photons to
the outside of the fiber, increases the capture efficiency as more photons undergo
total internal reflection [60]. Depending on the relation of the refractive index
from scintillator and fiber material, improvement up to a factor of 4 compared
to emission in the middle of the fiber are possible. One potential material for
the OWL-fibers is polysterene. For a scintillator with refraction index of n = 1.48

the capture rate has a theoretical maximum of 38 % [61]. For the detection of the
captured light silicon photomultipliers (SiPMs) are used, which are solid-state
photodetectors that offer great sensitivity and versatility in detecting low-intensity
light signals. SiPMs operate based on the principle of avalanche photodiodes,
wherein incident photons generate electron-hole pairs within the silicon substrate.
These charge carriers undergo multiplication via avalanche breakdown, resulting
in a measurable electrical signal proportional to the incident light intensity. One
of the key advantages of SiPMs is their high photon detection efficiency (PDE) com-
patible with PMTs, enabling the detection of single photons with high precision.
The PDE strongly depends on the wavelength. The maximum is reached around
450 nm, where efficiencies between 30 % and 40 % are feasible [62]. Moreover,
SiPMs exhibit excellent timing resolution in the range from 10 ps to 100 ps [63],
allowing for precise temporal characterization of light pulses. This capability
makes SiPMs especially well suited for the hybrid scintillation approach, where
a high timing resolution is needed to separate Cherenkov and scintillation light.
Additionally, SiPMs offer compact size, low power consumption and robustness
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against magnetic fields, making them suitable for integration into many experi-
mental setups. A disadvantage of SiPMs is the typically much higher dark current
compared to PMTs.

3.3 Detector design

(a)
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Fig. 3.3: (a) Basic detector design of the NuDoubt++ experiment [44]. The target
detector vessel (orange) is filled with hybrid opaque scintillator and con-
tains parallel running OWL-fibers (blue). Each fiber has one both ends
SiPMs (green) for the readout of the fibers. The veto detector vessel (gray)
contains transparent scintillator and has PMTs (purple) on the top and
bottom to build an active veto. (b) excerpt of the triangular grid with
spacing d = 2 cm.

The NuDoubt++ detector is designed with a cylindrical configuration, featuring a
target detector vessel enveloped by an active veto detector, as depicted in Figure 3.3.
The inner cylinder will contain approximately one metric ton of hybrid-slow
opaque scintillator loaded with the isotope undergoing double beta decay. This
cylinder will measure 110 cm in both height and diameter. Optimized wavelength-
shifting fibers (OWL-fibers), running parallel to the symmetry axis, will traverse
the cylinder. Each fiber will be coupled to silicon photomultipliers (SiPMs) at both
ends for the readout. SiPMs at both ends lead to more collected light and thereby
enhance the energy resolution crucial for detecting neutrinoless decay modes.
The arrangement of OWL-fibers will be in a triangular grid, with the exact spacing
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Tab. 3.1: Current limits for the half-lives of the positron emitting double beta
decay modes of 78Kr and 106Cd [64, 65]. For the limits, the corresponding
confidence levels, C.L., are listed. No measurements of these modes for
124Xe have been done yet.

Isotope T1/2(2ν) [a] T1/2(0ν) [a] C.L. [%]
β+β+ ECβ+ β+β+ ECβ+

78Kr > 2.0 × 1021 > 1.1 × 1020 > 2.0 × 1021 > 5.1 × 1021 68
106Cd > 1.7 × 1021 > 2.1 × 1020 > 4.0 × 1021 > 1.2 × 1021 90

yet to be determined. In this thesis, the impact of the spacing on both energy and
spatial resolution is investigated.

Surrounding the inner cylinder will be an optically separated outer cylinder, which
functions as an active veto. This outer volume, monitored by photomultiplier tubes
(PMTs) and filled with transparent scintillator, is designed to be especially effective
at detecting and vetoing neutrons.

3.4 Double beta decay isotopes

ββ decay is observable in isotopes for which the single β decay is energetically
forbidden. There are 34 isotopes that are theoretically predicted to undergo β+β+,
ECβ+, or ECEC [32]. The NuDoubt++ experiment focuses on isotopes with high Q-
values exceeding the gamma ray background of the 208Tl decay (ET l = 2.614 MeV)
from the uranium/thorium decay chain, narrowing down the selection to three
promising candidates: 78Kr (Qββ = 2.881 MeV), 106Cd (Qββ = 2.775 MeV) and 124Xe
(Qββ = 2.857 MeV). The half-life limits for these processes are listed in Table 3.1.
To address the challenge of detecting rare double beta plus decay events, one can
utilize the efficient enrichment of isotopes. Due to the long half-lives, many atoms
of the isotope are needed to measure the decays. While the natural abundance
of 78Kr is relatively low (0.4 %), it can be enriched to over 50 %. Also 124Xe has a
low natural abundance of only 0.4 %, but can be efficiently enriched. Similarly,
cadmium enrichment from 1.3 % to 66 % has been achieved [65].

Krypton can be loaded into the scintillator by bubbling the gas through it. Ac-
cording to Henry’s law [66], increasing the gas pressure results in higher levels of
krypton dissolved in the scintillator. As xenon is as well a noble gas, the isotope
can be loaded into the scintillator in the same way as krypton. In the case of
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cadmium, a compound can be dispersed throughout the wax-based scintillator,
which is manufactured as liquid and operated as solid or a highly viscous state [52].
A highly refractive compound can also increase the opacity of the scintillator.

3.5 Background

The detection of β+β+ and ECβ+ decays requires thorough control of the back-
ground sources, stemming from various processes with Q-values within the region
of interest of the isotope under examination. Internal and external backgrounds
both influence the experiment. Isotopes that can provide background due to β+

decays in a similar energy range as the double beta decays under consideration are
the carbon isotopes 10C and 11C. Furthermore, there are gamma emitting decays
in this range from the uranium-thorium decay chain. A more detailed discussion
on background events for the double beta decay of 78Kr is given in Section 5.2.2.

Internal background arises from radioactive isotopes within the detector volume,
such as the scintillator or the OWL-fibers. Radioactive contamination of the scin-
tillator, including uranium and thorium, can be mitigated through purification
efforts. Additionally, impurities within the OWL-fibers and dust on their surfaces
contribute to the background.

External backgrounds encompass all energy depositions occurring within or close
to the detector, originating from particles outside its volume. Cosmic muon-induced
spallation on nuclei of the surrounding material or on nuclei within the detector,
predominantly carbon, introduces significant background. This can be mitigated
by deploying the detector deep underground to reduce cosmic muon flux effec-
tively [67]. Furthermore, implementing a dedicated muon veto system around the
target volume allows for efficient tagging of residual muons, enabling the use of
time and spatial coincidences to veto spallation background [68].

These background sources are particularly pertinent for measuring the two-
neutrino modes of double beta decays with a larger energy range. However,
for the neutrinoless modes, only background within the small region of interest
(ROI) matters. The ROI for neutrinoless double beta decay, defined as a narrow
energy window around the monoenergetic peak at the Q-value, is determined
by the energy resolution of the detector. For 78Kr the ROI is between 2.821 MeV
and 2.941 MeV. In the case of 0νECβ+, the dominant background within the ROI
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originates from spallation-produced carbon and gamma emissions from contami-
nation of the OWL-fibers.
Combining opaque and hybrid scintillator technology can significantly diminish
background levels, crucial for detecting such rare decays.
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Reconstruction 4
This chapter focuses on the opaque scintillator component of the detector, utilizing
a Geant4 simulation as detailed in Section 4.1. The primary objective is to develop
a reconstruction method for determining the interaction position and energy
within the scintillator. When a particle travels through the scintillator, scintillation
light is generated and propagates through the opaque material to the OWL-fibers.
By measuring the photons with the SiPMs, the energy and position of the event
can be reconstructed. For simplification, the reconstruction is done for "photon
bombs", which are a fixed number of photons starting from the exact same point
within the scintillator. In particle events (e.g. electrons), the emission point is
spread over a few millimeters as the electrons travel through the scintillator. For
positrons, additional emission points from Compton-scattered electrons create
multiple localized regions of scintillation light within the detector.

To achieve a reconstruction, it is necessary to formulate a method that describes
the expected number of photons in each fiber based on the parameters to be
reconstructed. One approach to this problem, using random walk properties, is
discussed in Section 4.2 and Section 4.3. The reconstruction using a random walk
model is examined in Section 4.4, whereas Section 4.5 addresses the shadowing
effect that fibers have on each other, resulting in reduced photon counts in some
fibers. Additionally, a method combining simulation and interpolation is outlined
in Section 4.6. Furthermore, Section 4.7 examines the impact of different fiber
arrangements and scintillator properties on the reconstruction performance.

4.1 Simulation

A simulation of the opaque scintillator cylinder for the NuDoubt++ experiment has
been conducted using the GEANT4 simulation tool [69]. This simulation models the
propagation of photons through the scintillator, accounting for Rayleigh scattering
and absorption. The fibers are simplified as objects that "delete" all photons hitting
them, while only "detecting" photons with a specified efficiency. This means
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that only a limited number of the photons that hit the fibers are recorded as
detected. This simplification allows for simulating the expected hits in a fiber
without modeling the detailed propagation through the fiber and detection by
the SiPM, which are responsible for the decreased efficiency. By deleting the
photons upon contact with a fiber, it is ensured that no photon is detected multiple
times. This is a realistic assumption given the high absorption efficiency of the
wavelength-shifting paint on the fiber surface. Photons that are not captured by
total internal reflection are highly unlikely to be detected by another fiber, as the
absorption spectrum of the paint does not match the wavelength of the already
shifted photons.

The Rayleigh scattering length, absorption length, and refractive index for op-
tical photons can be specified, with these values assumed to be constant over
the entire wavelength range. In reality, these parameters vary with wavelength.
The scintillator is designed to have a light yield of 9000 photons per MeV. The
scintillator is contained inside a cylinder with 110 cm height and diameter, which
are the dimensions planned for NuDoubt++ . Some effects are not included in the
simulation. For example, the absorption of Cherenkov light by the scintillator is
not modeled. Cherenkov light covers a broad wavelength range, some of which
overlaps with the scintillator’s absorption spectrum. When this light is absorbed,
it is re-emitted and measured as scintillation light. Additionally, the quenching
effect in the scintillator is simplified by using a fixed Birks constant, as the exact
quenching behavior of the scintillator is not known.

The simulation can handle photon bombs with a discrete number of photons start-
ing from the same point as well as the signatures of real particles such as positrons
or electrons, which produce Cherenkov and scintillation light. Additionally, the
decay of isotopes can be simulated. For double beta decay, the GEANT4 BxDecay0
library is used to obtain the spectra of the decay products [70].

4.2 Random walk model

Light propagation in an opaque medium can be described by a random Walk [71].
In the following the description of a random Walk in the limit of a large step number
is shown based on the work of Lord Rayleigh [72]. His approach is generalized
to more dimensions as the photons can travel in all three spatial dimensions
(Section 4.2.1). The model is then applied to the problem of light propagation in
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an opaque scintillator and to the actual NuDoubt++ detector consisting of opaque
scintillator with fibers traversing through it (Section 4.3).

The term random walk was first introduced in 1905 by Karl Pearson [71]. However,
Lord Rayleigh applied this process earlier in 1880 to analyze a certain random
vibration problem [72]. A random walk is a random process that describes a path
that consists of a succession of random steps, often used as a model for various
stochastic processes. Examples of the application are the Brownian motion of
particles in a liquid [73], the search path of a foraging animal [74] and the stock
fluctuating price [75]. Pearson gave a simple model to describe a mosquito infesta-
tion in a forest. At each time step, a single mosquito moves a fixed length a at a
randomly chosen angle. He was interested in the distribution of the mosquitos af-
ter many steps has been taken. Lord Rayleigh found an asymptotic approximation
if the step number approaches infinity N → ∞ assuming a step length a = 1:

PN (R) ∼ 2R

N
e−R2/N . (4.1)

PN (R)dR is the probability of traveling a distance between R and R+dR in N steps.
The expected distance traveled scales according to the square root of the number
of steps, ⟨R⟩ ∼ N , which is typical for diffusion phenomena.
This approximation can be generalized to more dimensions and different step
lengths, shown in the following based on [76].

4.2.1 Generalization to d dimensions

With a random walk one can calculate the probability density function (PDF) p(r⃗, t)
for a photon to be at position r⃗ at time t. Therefore, consider a random walker
which starts at the origin in d dimensions. At each step, the walker moves by
an amount of ∆X⃗N described by a probability distribution pN (r⃗). The steps are
independent and pN (r⃗) = p(r⃗). Additionally, an isotropic angular distribution is
assumed, so that p(r⃗) is only a function of the radial distance r = |r⃗|.

Let X⃗N be the position of a walker after N steps, then there is the following
recursion for the PDF PN (R⃗) because of the independence of the steps:

PN+1(R⃗) =

∫
p(r⃗)PN (R⃗− r⃗)ddr⃗. (4.2)
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As N −→ ∞, PN (R⃗) varies on much larger length scales than a typical r⃗, one can
Taylor expand inside the integral:

PN+1(R⃗) =

∫
p(r⃗)

[
PN (R⃗)− r⃗ · ∇PN (R⃗) +

1

2
r⃗ · ∇∇PN (R⃗) · r⃗ + ...

]
ddr⃗ (4.3)

=PN (R⃗) +
⟨r⃗ · r⃗⟩
2d

∇2PN (R⃗) + ... (4.4)

Now one assumes that steps are taken at intervals of ∆t and gets:

PN+1(R⃗)− PN (R⃗)

∆t
=

⟨r2⟩
2d∆t

∇2PN + ... (4.5)

When N −→ ∞, the limiting distribution ρ(R⃗, t), defined by PN (R⃗) = ρ(R⃗,N∆t),
satisfies the diffusion equation

∂ρ

∂t
= D∇2ρ (4.6)

with the Diffusion constant
D =

⟨r2⟩
2d∆t

. (4.7)

The walker starts in the origin, so the initial condition is ρ(R⃗, 0) = δ(R⃗). This
partial differential equation can be solved with a Fourier transform. With that,
one obtains

∂ρ̂

∂t
= −Dk2ρ̂ . (4.8)

This ordinary differential equation has the solution

ρ̂(k⃗, t) = e−Dk2t . (4.9)

Taking the inverse Fourier transform gives

ρ(R⃗, t) =
e−R2/4Dt

(4πDt)d/2
, (4.10)

which is the probability density function for large number of steps (large times).
This equation is also known as the Green’s function of the random walk. In the
corresponding discrete problem one gets

PN (R⃗) ∼ e−dR2/2⟨r2⟩N

(2π⟨r2⟩N/d)d/2
, (4.11)

4.2 Random walk model 26



as N → ∞. This is the large step limit of PN (R⃗) for an isotropic random walk in d

dimensions. The PDF of the position tends to a normal distribution, whose width
only depends on the variance of the individual displacements. For an isotropic
walk, the PDF of the distance from the origin can be calculated by

PN (R) = AdR
d−1PN (R⃗). (4.12)

Here Ad is the surface area of the unit sphere in d dimensions. For Pearson’s
problem with d = 2 and ⟨r2⟩ = a2 = 1 equation (4.12) gives the asymptotic result of
Lord Rayleigh (4.1).

4.3 Application of the random walk model in NuDoubt++

These results can now be used for the light propagation in an opaque scintillator.
In this case, one has d = 3 dimensions. The steps in the opaque medium are
characterized by the scattering length λs. Every time a photon is scattered it
changes its direction according to the angular distribution of the specific scattering
phenomena.

4.3.1 Scattering mechanism

Light scattering in opaque scintillator can occur through two primary mechanisms:
Mie scattering and Rayleigh scattering. Mie scattering describes the elastic scatter-
ing of light on particles with diameters similar to the wavelength of light, while
Rayleigh scattering occursl when the size of the particles is much smaller than the
wavelength (particle size < 1/10 wavelength [77]). These two mechanisms differ in
their wavelength dependency and scattering angular distribution. Mie scattering
tends to be more forward-directed than Rayleigh scattering. To illustrate, consider
Figure 4.1, which depicts the scattering angular distribution for Rayleigh and Mie
scattering. Since the exact scattering mechanism in the opaque scintillator is un-
known, the simulation and calculation is done assuming Rayleigh-scattering due
to its simplicity. The intensity of scattered light Is by a small sphere of diameter
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Fig. 4.1: Scattering angular distribution of Rayleigh and Mie-scattering [78].

d and refractive index n from a light beam with intensity I0 and wavelength λ is
given by the relation

Is = I0
1

2R2

(
2π

λ

)4(n2 − 1

n2 + 2

)2(
d

2

)2 (
1 + cos2 θ

)
. (4.13)

Here, R is the distance to the particle and θ the scattering angle. Using Rayleigh
scattering is well suited as Mie-scattering can be described and simulated with
Rayleigh scattering using an effective scattering length.

Due to the small scattering length, light in opaque scintillators is expected to
undergo multiple scatterings. The average cosine ⟨cos(θ)⟩n after n scattering events
can be expressed in terms of the average cosine of the angle θ for a single scatter
⟨cos(θ)⟩ by

⟨cos(θ)⟩n = ⟨cos(θ)⟩n . (4.14)

Here, ⟨cos(θ)⟩ represents the anisotropy of scattering. If ⟨cos(θ)⟩ > 0, scattering
is preferentially in the forward direction (as is the case for Mie scattering). If
⟨cos(θ)⟩ = 0 the scattering is forward-backward symmetric. This is the case for
Rayleigh scattering and also for isotropic scattering.

The geometric scattering length λs, which represents the average distance be-
tween scattering events, can be considered the typical distance traveled between
scattering events. However, for strongly forward-peaked scattering, an effective
scattering length λe is more appropriate. This effective length, known as the
transport mean free path, accounts for the tendency of light to preferentially
scatter forward. The effective scattering length can be estimated using a statistical
argument common in radiative transfer theory [79]. As light travels through a
scattering medium, it undergoes multiple scattering events, with each step advanc-
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ing along the initial direction by an amount determined by the average cosine of
the scattering angle. By summing up these steps over many scattering events, one
arrives at the total effective length of light transport

λe =

n∑
i=0

⟨cos(θ)⟩i . (4.15)

For a large number of scattering events n, this becomes

λe =
λs

1− ⟨cos(θ)⟩
. (4.16)

Hence, as light propagates through a turbid medium the center of the photon
cloud moves along the incident direction at a decreasing pace until it comes to a
halt at a distance of λe from the point of injection. The effective scattering length
thus serves a similar role for anisotropic scattering as the geometric scattering
length does for isotropic scattering. Consequently, Mie-scattering can be effectively
included in the model by using λe instead of λs.

Note that throughout the following discussion, the term scattering length λs is
consistently used. However, when considering Mie scattering, it should be replaced
with λe.

4.3.2 Light propagation

The light propagation in an opaque medium can be described by a random walk.
For this purpose, the model derived in Section 4.2.1 can be used. This description
is only valid, if the photons travel path lengths much larger than the scattering
length λs, as only then the number of steps is sufficiently large. The model assumes
isotropic scattering, which is appropriate for Rayleigh scattering due to its zero
anisotropy. However, for Mie scattering, the effective scattering length must be
used instead of the geometric one to account for anisotropy.

The probability density function for the path length before the next scattering is
given by

p(r) =
1

λs
e−

r
λs , (4.17)

and thus only a function of the radial distance r. According to (4.7), the diffusion
constant depends on the mean square displacement per step. This is given by
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Fig. 4.2: Comparison of the random walk model with the simulation of the light
propagation. The x, y and z component after t =1 ns is shown as well as
the distance from the origin. The scattering length is 1 mm.

⟨r2⟩ = 2λ2
s. The time step ∆t can be replaced by ∆t = ⟨r⟩/v = λs/v, where v is the

velocity of the photons given by the speed of light c divided by the refraction index
n (v = c0/n). By putting this into (4.10), one obtains

ρ(R⃗, t) =

(
4

3
πvλst

)− 3
2

exp

(
−3

4

R⃗2

vλst

)
. (4.18)

To determine the distribution of the distance from the origin, one must multiply
by 4πR2.

This theoretical model is validated through simulations of photons in Geant4,
where their positions are tracked after a specific time t. Figure 4.2 compares
the distribution obtained from the simulation to the theoretical model. In the
simulation, the photons initially originate from the point (0,0,0).
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Fig. 4.3: Comparison of the model including absorption and the simulation for
different times t. The light propagation is for both times simulated with
and without absorption in the scintillator. The absorption length was set
to 1 m and the scattering length to 1 mm.

In the scintillator the photons can not only be scattered but also absorbed. As the
absorption length is much larger than the scattering length (λa >> λs), absorption
can be added to the distribution of the position as a survival probability, which
decreases exponentially with the path length. So (4.18) is modified to

ρ(R⃗, t) =

(
4

3
πvλst

)− 3
2

exp

(
−3

4

R⃗2

vλst

)
exp

(
− vt

λa

)
. (4.19)

In Figure 4.3, the model is again compared to the simulation, showing good agree-
ment. Overall, the random walk model effectively describes light propagation in
an opaque medium.

4.3.3 Integration of fibers into the random walk model

In addition to modeling the light propagation in the opaque scintillator, a compre-
hensive model for the NuDoubt++ experiment must also account for the optical
fibers. When photons encounter the fibers, they are absorbed by the wavelength-
shifting paint on the fibers. The absorption efficiency of the paint used for the WOM
exceeds 99 % when used in air [59]. Although this efficiency decreases slightly
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in the scintillator, it remains high enough to assume that all photons hitting the
fibers are absorbed. Once absorbed, the photons are re-emitted at a different
wavelength that lies outside the absorption spectrum of the paint. Consequently,
photons absorbed once but not captured by total internal reflection cannot be
absorbed again, simplifying the model by treating them as absorbed by the first
fiber they encounter.

The fiber grid is spaced a few centimeters apart, which allows the model to be
valid despite designed for many steps, as the scattering length is on the orders of
millimeters. The primary goal of this modeling is to calculate the expected fraction
of photons arriving at each fiber based on their initial position in the scintillator,
which is crucial for event reconstruction. The fibers are aligned parallel to the
z-axis. Therefore, measuring the photon count in a fiber does not directly provide
information about the z-position where the photon originated. To achieve reso-
lution for the z-position, the time difference between the SiPM at the upper and
lower ends of the fibers can be analyzed. However, for the current purpose, the
z-position is not considered. Instead the distribution from previous calculations
(Equation 4.19) is integrated over z from −∞ to ∞, since the fiber length is signif-
icantly larger than the scattering length in the scintillator (meters compared to
millimeters).

Additionally, the starting position (x0, y0) of the photons is now included in the
equation, whereas previous calculations assumed the photons originated at the
origin. The distribution is also integrated over time t to determine the expected
fraction of photons in the fiber at any time after their emission, rather than at a
specific moment. This integration leads to the following distribution:

p(x, y, x0, y0) = C(λa, λs)K0

(√
[(x− x0)2 + (y − y0)2]

3

λsλa

)
. (4.20)

Here, K0 represents a modified Bessel function of the second kind. C(λa, λs) de-
notes a normalization factor that depends on both the absorption and scattering
lengths. This equation provides the expected fraction of photons at the point (x, y)
for any arbitrary z-position. To determine the expected fraction of photons inside
a fiber with radius r, this function must be multiplied by the fiber’s effective area.
Although mathematically correct to integrate over the fiber’s area, a reasonable
approximation can be achieved by simple multiplication, given the function’s
relatively slow variation over the area for small fiber radii. Consequently, an
additional factor depending on the fiber radius r is included in Equation 4.20.
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Fig. 4.4: Comparison of the simulation with the model using a fitted normalization
factor C. The parameters varied are:(a) absorption length, (b) scattering
length, and (c) fiber radius. In each case, the other parameters are fixed
at r = 1 mm, λs = 1 m, and λs = 1 mm. The Poisson uncertainty error bars
are too small to be visible.

For simplicity, the normalization factor is not analytically calculated but instead
obtained by fitting the model to simulation data with a χ2 fit. In these simulations,
fibers do not absorb photons but merely count those that arrive. This fitting process
is repeated for various absorption lengths, scattering lengths, and fiber radii to
derive an equation for the normalization factor based on these three parameters.
The results, shown in Figure 4.4, compare the simulation data with the model
using the fitted normalization factor, demonstrating good agreement. One can
also see, that for a high fiber radius and a large scattering length, the model does
not fit for small distances so good anymore, because there the assumption of a
large number of steps before hitting a fiber is no longer fulfilled.

Until now, it was not considered, that the fibers absorb the photons and therefore
photons that hit a fiber are no longer able to reach another one. In the part before,
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Fig. 4.5: Simulation results for two different starting points (indicated in red). Each
initial photon bomb began with N = 9000 photons. The counts represent
the number of photons arriving at each fiber, with fibers that received no
photon hits shown in gray

the fibers counted only the photons. The fiber absorption is included into the model
as an additional absorption length, leading to a combined effective absorption
length:

1

λa
=

1

λa,scint
+

1

λa,fiber
. (4.21)

The assumption is made, that the fibers are far enough apart to be treated as a
random absorption. Especially, it is assumed that each fiber influences all others
in the same way.

Here again the model is fitted to simulation data, but this time with the real fiber
grid with absorbing fibers. The test is done for a triangular grid with a spacing
of 1.5 cm and a fiber radius of 1 mm. The scattering length is set to 1 mm and the
scintillator absorption length λa,scint to 1 m.

The simulation results for two different initial positions of photons are illustrated
in Figure 4.5. The χ2 fits for this data is shown in Figure 4.6. The reduced χ2 values
for the fits are 1.61 and 1.42, both of which are close to 1. This suggests that the
fitted model accurately represents the simulation data, despite minor deviations
observed primarily around 20 mm.
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Fig. 4.6: Comparison from simulation including absorbing fibers with the random
walk model for two different start points of photon bombs. The effective
absorption length is fitted to the simulation data.

4.4 Reconstruction using the random walk model

Since the predicted photon counts from the model align well with the simulation
data, the model is now applied for reconstruction. The reconstruction process
utilizes the likelihood approach, as detailed in Section 2.3. Here, the measurements
n⃗ consist of photon counts in each fiber. The parameters to be reconstructed are the
initial photon start position, x and y, and the number of photons N . The number of
photons is indicative of the energy of the particle that generated the photons, as the
scintillator’s light yield is approximately linear with respect to energy. Given that
the measurements involve counting photons, a Poisson distribution is assumed,
leading to the following likelihood function:

L(x, y,N |n⃗) =
M∏
i=1

νi(x, y,N)ni
exp(−νi(x, y,N))

ni!
. (4.22)

In this equation, νi(x, y,N) represents the expected photon count in each fiber,
derived from Equation 4.20, and scaled by the number of initial photons N . The
measurements are taken across M fibers, and it is currently assumed that all
photons hitting a fiber are detected. However, in practice, due to the low cap-
ture efficiency resulting from total internal reflection in the OWL-fiber and the
efficiency of the SiPM, only a fraction of the photons are actually measured.
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Fig. 4.7: Likelihood reconstruction using the random walk model for two different
starting points of photon bombs. For each of the 3 parameters a 1D scan
is shown, as well as a 2D scan of the x-y-plane. The different contours
represent the 1 to 6σ confidence intervals.

The optimal parameters are determined by minimizing the negative logarithm
of the likelihood function (LLH). For this minimization, the Nelder-Mead method,
which is based on the simplex algorithm, is used [80]. In this initial test, the
algorithm is initialized with the true parameter values. Figure 4.7 shows the results
of likelihood parameter estimation for two different sets of true parameters. In the
1D likelihood profile scans, each parameter is varied within a small range while the
likelihood function is minimized with respect to the other two parameters at each
point. Similarly, in the 2D scan of the x-y plane, each point involves a minimization
to determine N . The contours represent confidence intervals ranging from 1 to 6σ.
In the profile scans, the uncertainty is indicated where the difference between the
negative log-likelihood (LLH) value and the minimum equals 0.5.

In the first scenario, the photon start point is exactly midway between two fibers.
Here, the reconstruction is accurate, with the true values well within the uncer-
tainty range. In the second scenario, the start point is close to a fiber, resulting in
poor reconstruction. While x and y lie within the 4σ interval, the reconstructed
number of initial photons is significantly lower than expected, with the true value
being strongly rejected. This discrepancy is observed in all reconstructions, except
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for starting points within a small (∼ 2 mm) radius around the midpoint between
two fibers.

To investigate this discrepancy, the random walk model is compared to the simula-
tion for different photon start points, as shown in Figure 4.8. For each point 10 000
photons are started. The model is fitted for photons starting midway between
two fibers (shown in blue). For start points close to a fiber (e.g., shown in gray),
the simple model fails to accurately describe the photon counts. Between 10 mm
and 20 mm, the counts decrease much more steep than expected, but beyond
25 mm, the counts initially match the expected value before rising steeply again.
This discrepancy is due to the shadowing effect of fibers on each other, where
photons absorbed by one fiber cannot reach any other fiber. When another fiber
is directly behind another one, the photon count is much lower than anticipated
with the model. This effect is seen for the different "fiber rings" shown in orange
and green in Figure 4.8b, corresponding to the steep decreases in photon counts.
This indicates that the simplified model, which assumes counts depend only on
the distance from the start point, is inadequate for start points close to the fiber. A
more complex model, accounting for the location and orientation of the nearest
fiber from the photon start point is necessary as this is the fiber most relevant for
shadowing.
The following section examines the shadowing effect in more detail, investigating
its impact on the measured photon counts.

4.5 Shadowing effect

The configuration of fibers plays a pivotal role in determining the amount of
photons reaching each fiber. Fiber shadowing, where fibers obstruct each other’s
paths, result in diminished light reaching fibers located behind others. This can
lead to different amount of photons at the same distance depending on the angle.
The shadowing phenomenon complicates the simplistic model of a random walk
with fibers merely extending the absorption length (c.f. Section 4.3.3). To delve
into this effect, a detailed examination using simulations is conducted.

In this simulation, two distinct types of fibers are used: the conventional absorbing
fibers, as encountered previously, possessing an absorption probability of 100 %,
and newly introduced detection fibers. These detection fibers serve solely to tally
arriving photons without absorbing them, providing a means to scrutinize the
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Fig. 4.8: Simulated counts in each fiber depending on the distance between start
point and fiber for several different start points. The model is fitted for the
case where the photons started in the middle between two fibers (blue).
(b) shows the start points.

shadowing effects of absorbing fibers across multiple detection fibers concurrently.
Each photon is only counted once per detection fiber. All fibers in the simulation
exhibit a radius of 1 mm. The detection fibers are arranged in a circular configura-
tion, with a radius denoted as R. Despite their proximity, the fibers do not overlap.
Furthermore, an absorbing fiber is positioned at a distance r from the photon
starting point, with α representing the angle between the detection fiber and the
absorbing fiber (see Figure 4.9). The scattering length is set at 1 mm.

The shadowing effect is studied for two distinct radii R: 8 mm and 16 mm. A total
of 100 000 photons are initiated at the center, and the investigation ensues into the
number of photons reaching the detection fibers based on both their angle and
the distance of the absorbing fiber.

The initial test focuses on discerning whether the fraction of arriving photons
is uniform across all angles in the absence of an absorbing fiber. As depicted
in Figure 4.10, fluctuations among the fibers fall within the bounds of Poisson
uncertainty.
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Fig. 4.9: Arrangement of the fibers in the simulation to study the shadowing effects.
The absorbing fiber is depicted in orange, while the detection fibers are
represented in pink. The red ’x’ denotes the starting point of photons.
All fibers have a radius of 1 mm and are aligned parallel to the z-axis,
spanning a length of 2 m. Both the radius of the detection fiber ring,
denoted as R, and the distance of the absorbing fiber to the starting point,
denoted as r, are adjustable parameters.
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Fig. 4.10: Fraction of arriving photons at the detection fibers for two different
radii R. No absorbing fiber for shadowing is included.
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Fig. 4.11: Correction factor for varying distances to the absorbing fiber, r, and radii
of the circle, R. The purple circle denotes the absorbing fiber.

To quantify the influence of an absorbing fiber, a correction factor c is introduced.
This factor is defined as the ratio of the number of photons with an absorbing
fiber Nwith to the number without any absorbing fiber Nwithout:

c =
Nwith

Nwithout
. (4.23)

For Nwithout, the mean value across all angles is computed.

The correction factor is shown as an example in Figure 4.11 for various combi-
nations of r and R. The impact of fiber absorption extends to all detection fibers,
including those positioned at an angle of 180° relative to the absorbing fiber. Al-
though the influence is minimal in this case compared to the other angles, for
the configuration with R = 8 mm and r = 3 mm only slightly over 50 % of the
photons without absorbing manage to reach these fiber. As anticipated, the most
pronounced influence occurs directly behind the absorbing fiber (0°), where only
approximately one-third of photons reach the detection fiber.

For more configurations the shadowing effect is shown in Figure 4.12. Here, for
R = 8 mm and R = 16 mm the influence of the absorbing fiber is depicted relative
to its distance. Note that this illustrations show the fraction of arriving photons
rather than the correction factor. Notably, for larger distances r, the disparity
among angles is most pronounced. Conversely, for smaller r, the discrepancy is
less prominent, albeit resulting in a larger overall reduction in photon fractions.

4.5 Shadowing effect 40



2 0 2
Angle

0.10

0.15

0.20

0.25

0.30

Fr
ac

tio
n 

of
 p

ho
to

ns

W/o shadowing
r = 2 mm
r = 3 mm
r = 4 mm
r = 5 mm
r = 6 mm

(a) R = 8 mm

2 0 2
Angle

0.04

0.06

0.08

0.10

0.12

0.14

Fr
ac

tio
n 

of
 p

ho
to

ns

W/o shadowing
r = 2 mm
r = 3 mm
r = 4 mm
r = 5 mm
r = 6 mm
r = 7 mm
r = 8 mm
r = 9 mm
r = 10 mm
r = 11 mm
r = 13 mm
r = 14 mm

(b) R = 16 mm

Fig. 4.12: Fraction of arriving photons at the detection fibers for different distances
of the absorbing fiber compared to the scenario without absorption fiber.
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4.5.1 Superposition of shadowing effects

In the fiber grid within the detector, numerous fibers are arranged, each capable
of influencing others through shadowing effects. While the previous analysis
focused on the impact of a single absorbing fiber, in the next investigation a
second absorbing fiber is introduced. The aim is to explore whether one can
simply combine the shadowing effects from each fiber individually. This would
allow to correct the photon counts in the detector grid in an efficient way.

To explore the feasibility of a simple superposition approach for correcting the
shadowing effects, simulations similar to those described previously are used. This
time, an additional absorbing fiber was introduced within the circle of detection
fibers, with the radius of the detection fiber circle set at R = 20 mm. Two different
arrangements of absorbing fibers are studied. Four simulations are performed:
one without absorbing fibers, one with two absorbing fibers present simultane-
ously, and two separate simulations, each with one absorbing fiber individually.
In each case, correction factors are computed based on the angle as done before.

To assess the validity of the superposition method, the expected photon counts
for the scenario with both absorbing fibers are calculated by multiplying the
correction factors obtained from each individual fiber:

N2Fiber = c1 · c2 ·Nwithout , (4.24)

where Nwithout represents the photon counts without any absorbing fibers. The
comparison between these calculated values and the simulation results with
two absorbing fibers is depicted in Figure 4.13. The approach was tested for
two different absorption fiber arrangements. Here, the color scale illustrates
the relative difference between the calculated and simulated values. In both
configurations, maximum deviations of about 10 % are observed. Notably, in one
configuration (Figure 4.13b), the calculated values were consistently lower across
almost all angles, while in the other configuration, there were detection fibers
where the calculated values exceeded the simulation results.
Despite these discrepancies, the overall deviation appears sufficiently small to
warrant consideration of the superposition method for correcting photon counts
in the actual fiber grid.
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Fig. 4.13: Comparison of the amount of photons arriving at the detection fibers
from simulation with the amount from the superposition calculation for
two different arrangements of the absorbing fibers. The black circles
represent the absorbing fibers.

4.5.2 Correction of the random walk model with shadowing effects

As the superposition approach to calculate correction factors in presence of multi-
ple absorbing fibers seems to work, the approach is now applied to the hexagonal
fiber grid of the NuDoubt++ detector. A fiber spacing of 20 mm and fiber radius of
1 mm is used.

Therefore, for the fiber where one wants to know the photon count one needs the
correction factor from all other fibers individually to multiply them. This factors
depend on the position where the photons start, as then the angle between the
shadowing fibers and the one one looks at changes as well as the distances. In
Figure 4.14a, the parameters relevant for the correction factor are illustrated: R, r
and α. This already shows that there are a lot of combinations of these parameters
when allowing a random start point. As it is impossible to simulate the correction
factor for all combinations, a large number is simulated and then the factors are
interpolated to get values for each combination. For this R and r are changed
between 0 and 15 cm. The interpolation in this three dimensional parameter
space is done using radial basis function interpolation [81]. The performance of
this interpolation is shown in Figure 4.14b. There the predicted factor from the
interpolation is compared to the factors obtained from simulation. This is done
for events not included in the interpolation. As can be seen, except a few outliers
the prediction matches pretty well the simulation results, which indicates a good
interpolation.
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Fig. 4.14: (a) Illustration of the superposition approach. The red ’x’ denotes the
start point of the photons. To calculate the correction factor for the
counts in the green fiber, the factors of all blue and orange fibers are
multiplied. As an example, the parameters for the factor of the orange
fiber are shown. (b) Comparison of the simulated correction factor with
the predicted one from the interpolation. For the check, simulation data
points which are not included in the interpolation, are used.

Now the shadowing correction is applied to the model calculating the expected
amount of photons in each fiber. This is done for two different start points of the
fibers, one corresponding to a point near to the mid point between two fibers
and one pretty close to a fiber. The comparison from this calculation with the
simulation results is shown in Figure 4.15. There are a lot of deviations between
the calculation and the simulation, especially in the fibers far away. Notably, for
the start point in the middle the calculation gives in most of the fibers a too low
photon count. This is kind of expected, as the superposition of the shadowing
effects does not include that photons which are already shadowed from one fiber
cannot be absorbed in another one. Contrary, in the other case the calculation
remains too high.

Overall, no enhancement of the random walk model was attained through this
method, underscoring the necessity for an alternative approach to predict photon
counts based on the start point.
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Fig. 4.15: Comparison of the predicted counts from the shadowing effect correction
with the simulation for two different start points of the photons. (a)
shows a start point near to the middle between two fibers, (b) a start
point really close to a fiber. The fiber spacing is 20 mm and the fiber
radius 1 mm.

4.6 Reconstruction using interpolation

Since no satisfying results were achieved with the random walk model, a purely
simulation based approach is chosen. Therefore, events covering the whole pa-
rameter space were simulated and the results have been interpolated. For the
reconstruction, the same likelihood function as before (Equation 4.22) is used,
where the expectations νi(x, y,N) are obtained from the interpolation now and not
from the Random walk model. The relevant parameters for the interpolation are
discussed in Section 4.6.1. The reconstruction performance for photon bombs is
shown in Section 4.6.2. Section 4.6.3 presents the Asimov approach for evaluating
reconstruction performance.

4.6.1 Interpolation

The goal of the study is to determine how different detector geometries and scin-
tillator properties influence reconstruction performance. To achieve this, an
interpolation is created that depends on these parameters. From the shadowing
effect study, it is known that the counts in a fiber not only depend on its distance
to the photon source but also on the orientation and distance of the nearest fiber.
This results in the following seven parameters for the interpolation:
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• Scattering length of the scintillator λs

• Absorption length of the scintillator λa

• Fiber radius rF

• Distance between fibers in triangular grid dF

• Distance from source to fiber R

• Distance from source to nearest fiber r

• Angle between fiber and nearest fiber α

A visualization of the last three parameters is shown in Figure 4.14a. For the
interpolation, simulations were conducted for several combinations of λs, λa, rF ,
and dF . The scattering length was varied in 6 steps between 0.5 mm and 8 mm, the
absorption length 6 steps between 0.5 m and 5 m, the fiber radius 3 steps between
1 mm and 3 mm, and the distance between fibers between 1 cm and 5 cm in 5 steps.
To cover the entire parameter space of r, R, and α, The photon sources were varied
within a small region of the detector, which is representative of the entire detector
due to its repetitive symmetry. 15 source positions have been simulated for each
combination of the other parameters. As an example, the photon source positions
for rF = 1 mm and dF = 1 cm are shown in Figure 4.16a. For each start point,
10 simulations were conducted, each with one million photons, to have a small
statistical uncertainty. The fraction of photons arriving at the fibers was averaged
over the 10 simulations for each combination. The results were then interpolated
using radial basis function interpolation. The quality of this interpolation is shown
in Figure 4.16b, where the predicted fraction is compared to the simulated fraction
for events not included in the interpolation.

It is assumed that all photons hitting a fiber are detected. To obtain the actual
number of expected measured photons, reflecting the expected efficiency of the
SiPMs and accounting for losses in the OWL-fibers.

4.6.2 Reconstruction performance

To evaluate the reconstruction performance, 1000 photon bombs, each containing
10 000 photons, were simulated at a fixed position in the detector (x = 5.86 mm,
y = −7.58 mm). Unless otherwise specified, a "standard" detector configuration of
scattering length λs = 1 mm, absorption length λa = 2 m, fiber radius rF = 1 mm
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Fig. 4.16: (a) Start points of the photon bombs in the configuration with fiber radius
rF = 1 mm and fiber spacing dF = 1 cm. One start point is chosen directly
at the edge of a fiber to cover the total space. (b) Comparison of the
simulated photon fraction with the predicted one from the interpolation.
For the check, simulation data points which are not included in the
interpolation, are used.
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Fig. 4.17: Likelihood reconstruction using the interpolation for true parameters
x = 5.86 mm, y =−7.58 mm, N = 10 000. Profile scans for each parameter
and a 2D scan of the x− y-plane is shown. The contours represent the 1
to 6σ confidence intervals.
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Fig. 4.18: Reconstruction performance at x = 5.86 mm, y = −7.58 mm, N = 10 000.
The true parameters are indicated with the vertical lines. For compari-
son, the center of gravity is shown for x and y and the corrected number
of total counts for N .

and fiber distance dF = 1 cm is used in the following. Notably, the fiber efficiency
is set to 9 %, necessitating scaling down the expectation values derived from
interpolation. For each simulation at the fixed point, a likelihood reconstruction
is performed using expectation values from the interpolation. An example of such
a likelihood scan is depicted in Figure 4.17.

To minimize the negative log-likelihood, the Nelder-Mead algorithm is used with x

and y initialized at the center of gravity calculated from the measurements. In the
center of gravity the fiber center positions (xi, yi) are added up weighted by the
counts ni in each fiber divided by the total number of counts. For the seed of N the
total number of counts is corrected by the fiber efficiency of 9 % and additionally
with the expected fraction of absorbed photons in the scintillator for the specific
detector configuration. These values are determined from simulation data used in
interpolation, averaging the number of total counts for each configuration. These
seeds lead to similar results as it is the case for seeding at the truth values, so these
are good values for real measurements where the true parameters are unknown.
Figure 4.18 illustrates the results of all reconstructions at the fixed point. The
interquartile range, defined as the difference between the 75th and 25th percentiles
of the reconstructed parameter distributions, quantifies their width. Seed values’
distributions are also shown for comparison. At this fixed point, a positional
resolution of 0.19 mm is achieved. The center of gravity serves as a reasonably
accurate estimator for x and y, although broader than the reconstruction with a
width of 0.25 mm. The center of gravity distribution is slightly biased toward the
nearest fiber, which in this case is located at (5,−8.66), while the reconstruction
exhibits no such bias. Regarding the photon number N , both the reconstruction
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Fig. 4.19: Likelihood scans using the Asimov data set. The minimum is always at
the true parameters.

and corrected counts have a width of 438 photons, slightly biased toward higher
photon numbers.

This study shows the reconstruction performance at a single fixed point. To gener-
alize across the detector, reconstructions at various points are necessary due to
potential positional dependency. The Asimov approach offers a method to approxi-
mate resolutions across the detector without the need for extensive simulations.

4.6.3 Asimov approach

To investigate the reconstruction performance one can use Asimov data [82], which
significantly reduces simulation effort. Typically, thousands of simulation data
would need to be generated for a given set of parameters, and the reconstruction
performance would be determined from the distribution of these reconstructed
parameters. However, the Asimov approach defines a single representative event
using expected photon counts for the true parameter set. In the likelihood func-
tion (Equation 4.22), the measurements n⃗ are replaced by the expectation values
νi(xtrue, ytrue, Ntrue).

LAsimov(x, y,N) =
M∏
i=1

PMFPoisson(νi(xtrue, ytrue, Ntrue)|νi(x, y,N)) (4.25)

Here, PMF stands for the probability mass function of the Poisson distribution.
By construction, the minimum of this likelihood function is at the true parameter
values. The parameter uncertainties can be extracted from likelihood profile scans,
with an LLH value of 0.5 marking the boundaries of the 68 % confidence interval
(Figure 4.19). In the Asimov approach, this uncertainty range is assumed to be a
good estimator for the actual range of reconstructed parameters.
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Fig. 4.20: Comparison of the reconstruction with the curves obtained using the
Asimov approach.
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Fig. 4.21: Comparison of registered hits in two neighboring fibers and the total
hits with a Poisson distribution. Hits refers to the number of photons
arriving at a fiber, not the actual measured number of photons taking
into account the fiber efficiency.

To validate this method, 1000 events with x = 3.5 mm, y =−1.9 mm, andN = 10 000
are simulated and reconstructed. The distribution is then compared to the Asimov
curves in Figure 4.20. Here, the LLH value was first multiplied by −1. The expo-
nential of these values (exp(-LLH)) was then taken and normalized to create the
probability density function, which can be compared to the distribution from the
reconstruction. While the x and y curves align well with the reconstruction, the N

curve is much broader, indicating that the reconstruction performs better than
the Asimov approach predicts.

This discrepancy arises because the assumption of a Poisson PDF for the counts
in each fiber is not entirely accurate. While it holds for individual fibers, the
total number of counts is not Poisson distributed. This effect is illustrated in Fig-
ure 4.21, where the number of registered hits in two fibers from 1000 simulations
is compared to a Poisson distribution, showing good agreement. However, the
total number of registered hits deviates significantly from a Poisson distribution.
The reason, fo the total number of hits not being Poisson distributed is due to inter-
dependence of counts in individual fibers. It is impossible for all fibers to register

4.6 Reconstruction using interpolation 50



2900 3000 3100 3200 3300 3400
Hits fiber 1

1400

1500

1600

1700

Hi
ts

 fi
be

r 2

Fig. 4.22: Number of registered hits in two nearby fibers. There is an anti correla-
tion with a correlation coefficient of −0.35 between them.

more photons than expected because the total number of photons is limited. In the
same way, it is not possible for all fibers to see too little light. This anti-correlation
between nearby fibers is shown in Figure 4.22, where a correlation coefficient of
−0.35 is found for hits in two neighboring fibers. This correlation is not accounted
for in the likelihood function, as each fiber’s contribution is considered indepen-
dently. Consequently, for the number of initial photons, the Asimov approach is
inadequate and the ratio between the reconstruction width and Asimov width
depends on the correlation strength. In a denser grid, the correlation between
fiber is higher than for high distances between the fibers.

4.7 Influence of detector properties on reconstruction
performance

In the following study, the impact of various detector properties on the recon-
struction performance is examined. The parameters investigated include the
absorption and scattering length of the scintillator, the fiber radius, and the dis-
tance between fibers. Each parameter is varied individually while keeping the
others fixed at standard configuration values (λs = 1 mm, λa = 2 m, rF = 1 mm,
dF = 1 cm). The performance is analyzed by simulating 1000 events at random
positions in the detector. The number of photons is fixed at 9000, corresponding
to the light yield of electrons and positrons with an energy of 1 MeV. To obtain
realistic results, the fiber efficiency is set to 9 %.
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The distributions for the standard configuration are shown in Figure 4.23. The
interquartile range (IQR) of the position distributions is 0.27 mm, and for the
number of photons, it is 370. The uncertainty on the IQR values is obtained
using bootstrapping [83]. Figure 4.24 shows the IQR values for different detector
configurations.
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Fig. 4.23: Reconstruction performance for the "standard" configuration, illustrat-
ing the difference between reconstructed and true parameters. Simu-
lations for 1000 photon bombs originating from random start points
within the detector were conducted, with the number of photons fixed
at N = 9000. For comparison, the center of gravity is shown for x and y
and the corrected number of total counts for N .

Increasing the distance between the fibers worsens the resolutions. The position
resolution decreases from 0.27 mm at 1 cm spacing to 1.10 mm at 30 mm. The
number of photons can be reconstructed with a precision of 380 photons for low
fiber distance and only 540 at 30 mm.
The fiber radius has minimal impact on reconstruction at a low scattering length
of 1 mm because the high scattering probability ensures photons reach the fibers
even if they are small. Smaller fiber radii are advantageous as they use less ma-
terial, reducing the radioactive contamination in the detector. Additionally, less
space is consumed from the fibers leaving more volume for the scintillator con-
taining the double beta isotope.
The absorption length also has a minor influence. Figure 4.25 shows the fraction

of photons reaching any fiber for different absorption lengths and fiber distances.
In the standard configuration (1 cm spacing and 2 m absorption length), over 96 %
of photons reach a fiber. For an absorption length of 1 m, this decreases to 92 %. As
almost all photons hit a fiber with an absorption length of 2 m, further increases do
not significantly impact reconstruction. Only at 1 m there is a slight performance
decline.
The last parameter examined is the scattering length. Here, the resolution de-
creases with larger scattering lengths, as confining the light in a small volume
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Fig. 4.24: IQRs of the reconstructions depending on different parameters of the
detector configuration. All other parameters are fixed at the values
from the "standard" configuration (λs = 1 mm, λa = 2 m, rF = 1 mm,
dF = 1 cm). The uncertainties are calculated using bootstrapping.

using high scattering probability is advantageous. Larger scattering lengths al-
low photons to travel greater distances without hitting a fiber, resulting in fewer
photons near the origin.

Finally, the influence of the number of photons on the resolution is checked for the
standard configuration. The number of photons indicates the particle energy, as
the light yield of the scintillator is approximately linear with energy. As expected,
the resolution decreases with fewer photons. For N , the IQR divided by the number
of photons is given. At N = 9000 this value is at 4 %, while at N = 1000, it more
than doubles.
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Fig. 4.25: Fraction of photons reaching a fiber depending on the fiber distance for
different absorption lengths.
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Fig. 4.26: Influence of the number of started photons N on the reconstruction. The
standard detector configuration is used. For the number of photons, the
IQR divided by N is given.
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Background discrimination
with hybrid scintillator

5
NuDoubt++ utilizes a hybrid scintillator (as discussed in Section 3.1.2) offering
the opportunity to discriminate background and signal events based on the ratio
between scintillation and Cherenkov photons. This ratio differs for different
particle types like electrons and positrons. For example, only positrons emit
Cherenkov photons, not annihilation gammas, as Compton-scattered electrons’
energies usually fall below the Cherenkov threshold. This leads to a higher C/s
ratio for electrons compared to positrons.

In Section 5.1, the time resolution achievable in NuDoubt++ is discussed. The
different amount of scintillation and Cherenkov light for various event categories
is explained in Section 5.2. The results obtained from simulation is shown in
Section 5.3, while in Section 5.4 the influence of the time resolution on the C/S
ratio is examined. The last part, Section 5.5, focuses on the efficiency of event
classification based on their C/S ratio.

Different strategies exist for separating Cherenkov and scintillation light signals
in measurements. One approach involves examining different wavelength bands.
Cherenkov light exhibits a broad spectrum, peaking in the UV region and falling
off with λ−2 (as depicted in equation (3.5)), whereas scintillation light typically has
a narrow spectrum. By selectively detecting long wavelength light, either through
filters or red-sensitive photon detectors, it becomes feasible to capture Cherenkov
photons without contamination from scintillation light. A crucial requirement for
this method is that the scintillator emission spectrum remains minimal at long
wavelength, ensuring that the Cherenkov light remains discernible. With this
method, Cherenkov light can only be detected at longer wavelengths, making it
challenging to utilize for events with minimal Cherenkov emission, as only a small
fraction of the light is detectable. Previous studies have successfully identified
Cherenkov light using LAB and PPO as scintillator [84]. Another approach is to
separate fast Cherenkov light from slower scintillation light time-wise [85]. This
can be achieved using slow scintillators in conjunction with fast photon detectors.
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In principle, the required delay in scintillation times can be achieved by reducing
the fluor concentration in the scintillator and thus the efficiency of the excitation
transfer from solvent to fluor. However, this loss in efficiency is accompanied with
a strong reduction in scintillation light yield. Another approach to achieve a slow
organic scintillator is to mix two different solvents, as described in [86]. Those
slow scintillators usually have time constants in the range of (10 to 30) ns, results
in delayed scintillation light. This allows the early peak of Cherenkov light to be
more visible. NuDoubt++ adopts this method, necessitating high time resolution
to resolve the time difference.

5.1 Time resolution of the NuDoubt++ detector

The time resolution within a detector is influenced by various components. The
determination of time resolution is simplified by combining theoretical distribu-
tions of individual components instead of directly including complex detector
elements like OWL-fibers and SiPM readouts in the simulation. The distributions
of the individual components are discussed in the following.

5.1.1 Light emission

The first contributor to time resolution is the emission of light. Cherenkov light,
emitted promptly upon a particle traversing the scintillator, is assumed to follow a
Delta distribution for emission time due to the negligible flight time of charged
particles like electrons and positrons within the detector.

NC(t) = δ(t) . (5.1)

The time properties of the scintillator depend on its composition. For the NuDoubt++

experiment, the scintillator blend comprises 88 w.t % linear alkylbenzene (LAB)
as solvent and 10 w.t. % Diisopropylnaphthalene (DIN) as co-solvent, and 2,5-
Diphenyloxazole (PPO) at a concentration of 1 g/L as the fluor, with an additional
2 w.t. % of wax for opacity. This mixture is expected to yield approximately
9000 photons/ MeV. The time distribution of scintillators N(t)Scint can be described
by the exponential decay equation ((3.1)) for the de-excitation with the inclusion
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Tab. 5.1: Scintillator emission timing parameters [86].

A1 A2 τr [ns] τ1 [ns] τ2 [ns]
0.44 ± 0.07 0.56 ± 0.07 1.20 ± 0.43 13.0 ± 3.4 26.3 ± 4.6
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Fig. 5.1: Emission time spectra of Cherenkov and scintillation light.

of a rise time accounting for the excitation and energy transfer processes in the
scintillator:

NS(t) =
2∑

i=1

Ai
et/τi − et/τr

τi − τr
(5.2)

with
2∑

i=1

Ai = 1 . (5.3)

Here, τi represents the decay times for the prompt and delayed components, τr the
scintillator rise time, and Ai denotes the normalization factors. For the scintillator
devoid of wax, parameter values have been established previously [86], as listed
in Table 5.1.

5.1.2 Propagation through the scintillator

The propagation of light through the opaque scintillator to fibers also contributes
to the time resolution. Photons emitted within the scintillator encounter varying
path lengths due to its high number of scatters, resulting in a spread of arrival
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Fig. 5.2: Simulated time distribution of photons traveling through the scintillator
to the OWL-fibers for different fiber spacing.

times at the OWL-fibers. The distribution also depends on the relative position
from the photon start point to the fibers.

The dispersion is simulated by initiating 100 000 photons from different locations
within the detector, corresponding to different distances from the fibers. The
simulation results for the time until arriving at a fiber are illustrated in Figure 5.2.
Approximately 90 % of the photons reach a fiber in less than 0.43 ns. The simulation
employs fiber radii of 1.5 mm and a spacing of 10 mm. The scattering length was
set to 1 mm, and the absorption length to 2 m. For comparison, the distribution was
also simulated with larger fiber spacing. As expected, the distribution significantly
widens. For 30 mm, 90 % of the photons now reach a fiber in under 5 ns.

5.1.3 OWL-fibers

In the case of OWL-fibers, the time distribution is a convolution of multiple effects:
absorption and re-emission within the wavelength-shifting (WLS) paint, propaga-
tion through the fiber, and the detection time by the SiPM [87].
The SiPM is characterized by a Gaussian profile, conservatively assumed to have a
a standard deviation of σSiPM = 0.1 ns [62]. The wavelength-shifting mechanism
follows an exponential decay, with the time constant determined by the specific
composition of the wavelength shifter in use. Given the project’s early stage, the
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precise composition of the WLS paint is still work in progress. Consequently, the
measured exponential decay time from the paint employed in the wavelength
shifting optical module (WOM), recorded at τWLS = 1.5 ns [59], serves as the ba-
sis for this analysis. An additional contribution stems from photon propagation
within the fiber. After emission from the WLS paint, photon’s emission angles
determine whether they undergo total internal reflection or escape. For captured
photons, the path length varies depending on the emission angle. The resultant
path length distribution is approximated by an analytical model, called the flatten
model, treating the fiber mantle as a flat rectangle [59]. This distribution, denoted
as N(d), is described by

N(d) =
L

d2
exp

(
− d

λatt

)
. (5.4)

Here, L represents the fiber length, and λatt denotes the attenuation length, in-
cluding both scattering and absorption within the fiber. The propagation time
distribution can be derived from N(d) by substituting the path length d with time
t multiplied with the photon velocity, given by the speed of light c divided by the
refraction index n of the fiber medium:

N(t) =
Ln2

c2t2
exp

(
− ct

nλatt

)
. (5.5)

The length of the fiber L is fixed to 1 m and for the attenuation length a value of
2 m is assumed. For quartz fibers the refraction index is 1.46.

The overall time distribution of the OWL-fiber emerges from the convolution of
these three components, as depicted in Figure 5.3.

5.1.4 Overall time distribution

By convolving all the components (emission, propagation in scintillator, OWL-
fiber), the overall time spread of the NuDoubt++ experiment can be derived.

NNuDoubt(t) = NEmission(t) ∗NPropagation(t) ∗NOWL−fiber(t) . (5.6)

In Figure 5.4, the time distribution for different ratios of scintillation and Cherenkov
light is depicted.

A distinct early peak in the combined distribution becomes evident when there is
a relatively high proportion of Cherenkov light. Conversely, for a lower proportion
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Fig. 5.3: Time distribution of the OWL-fiber, which is a convolution of the wave-
length shifter, the propagation in the fiber and the detection in the SiPM.

of Cherenkov light, the peak is less pronounced and discernible. As the Cherenkov
peak is visible, it suggests the potential for time-wise separation of Cherenkov
and scintillation light using the slow scintillator employed in the NuDoubt++

experiment.

5.2 C/S ratio for different event categories

The hybrid scintillator technique is used to reduce background in the search for
double beta decays. In this study, Geant4 simulations are used to quantify the
production of scintillation (S) and Cherenkov (C) photons across various signal
and background decay scenarios.

First, all double beta decay channels which can happen in NuDoubt++ are dis-
cussed, followed by the decays assumed to produce background in the detector.

5.2.1 Double beta decays

Four signal decays are targeted by NuDoubt++ : 2νβ+β+, 2νECβ+, and their re-
spective neutrinoless counterparts. For this study the double beta isotope 78Kr is
used, which decays into 78Se with a Q-value of 2.881MeV. The C/S ratio differs for
the decay channels as different amount of kinetic energy and number of ionizing
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Fig. 5.4: The timing distribution of scintillation (S) and Cherenkov (C) light, as well
as of the combined total light for two different ratios of their amount.

particles are released. In β+β+ decay, the total kinetic energy T2β+ released is
given by

T2β+ = Q− 4me , (5.7)

while in ECβ+ decay, it is higher due to only one positron annihilating:

TECβ+ = Q− 2me − ϵK . (5.8)

Here, ϵK represents the K-shell electron binding energy, which for 78Se equals
18 keV, resulting in T2β+ = 837 keV and TECβ+ = 1841 keV for 78Kr. me denotes
the electron or positron mass, which lowers the kinetic energy of the positron if
annihilation occurs.

The kinetic energy in two-neutrino modes is shared between positrons and neutri-
nos, leading to a continuous spectrum, whereas in the neutrinoless case, positron
energy is discrete. Thus, the neutrinoless mode is always at the endpoint of the
spectrum from the two-neutrino mode. The electron capture modes produce at
least the amount of scintillation light corresponding to 1040 keV, the energy of two
annihilation gammas plus the binding energy of the captured electron released as
a de-excitation gamma ray. For double positron modes, the minimal scintillation
light corresponds to 2044 keV, as four annihilation gammas are always produced.
This minimum light output occurs when almost all kinetic energy is carried away
by neutrinos rather than positrons. Electron capture modes also generate sig-
nificantly more Cherenkov light. In these modes, the positron has more energy
compared to the combined energy of two positrons in the double positron modes,

5.2 C/S ratio for different event categories 61



Tab. 5.2: Overview of signal and background decays. For all isotopes, the decay
mode as well as the half-life is listed. Only the most probable decay chan-
nels with branching ratios higher than 90 % are listed. For the double
beta decays, the expected half-life for the two-neutrino modes from theo-
retical models is given [88]. Energy refers to the endpoint energy for β
decays and the discrete energy for α decays. All values are taken from
[89].

Isotope mode daughter T1/2 energy [keV]
85Kr β− 85Rb 10.73 a 687.06
210Bi β− 210Po 5.01 d 1161.29
210Po α 206Pb 138.38 d 5407.45
10C β+γ 10B 19.29 s 1903.02
11C β+ 11B 20.33 min 960.21
78Kr 2νβ+β+ 78Se (4.94 - 15.8) × 1025a 837
78Kr 2νECβ+ 78Se (1.34 - 4.41) × 1022a 1841

since only two annihilation gammas are produced instead of four. Positrons emit
Cherenkov photons, whereas annihilation gammas do not, as Compton-scattered
electrons have energies below the Cherenkov threshold. In the case of 0νβ+β+,
the scintillation light is significantly lower compared to 0νECβ+, despite both pro-
cesses having the same total energy. This difference arises because the quenching
effect is more pronounced for the two positrons in 0νβ+β+, resulting in a reduced
amount of scintillation light.

5.2.2 Background events

There are various decays and interactions which are considered as background
in the search for double beta decay. Background sources include the β− decay of
85Kr, with a relatively low Q-value of 687 keV but high decay rate due to its shorter
half-life compared to the signal decays of 78Kr. The abundance of this isotope is
pretty low (∼ 2 × 10−11 [90]) and can be further decreased by the enrichment of
78Kr.

Another source is 210Bi, a typical background introduced during production of
the scintillator, decaying via β− decay into 210Po with a Q-value of 1161 keV. The
subsequent α decay into the stable 206Pb produces minimal scintillation photons
due to quenching and no Cherenkov light due to the high particle weight of α

particles.
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Moreover, background can arise from the electron recoil after scattering of solar
neutrinos. Only the neutrinos from the 8B decay in the sun has a high enough
energy to fall within the energy range of the double beta decays. These neutrinos
have a very low production rate in the sun and the reaction rate in the NuDoubt++

detector is small as the neutrino interaction cross section is low and the detection
volume is small. This rare background is only relevant in the search for the rare
neutrinoless modes. 85Kr, 210Bi and the solar neutrinos from 8B all produce the
same C/S signature in the detector because they all generate electrons. The only
difference is that the energy spectrum of 85Kr ends at lower energies than that of
210Bi, while the maximum energy of neutrinos can exceed 10 MeV. An electron
typically produces much more Cherenkov light than a positron for the same total
visible energy (excluding neutrinos), as the kinetic energy of the electron is much
higher. This is because the positron’s energy is shared with two annihilation
gammas. Consequently, backgrounds involving electrons can be distinguished
from the double beta plus decay channels due to this difference in Cherenkov light
output.

Moreover, gamma-ray background, primarily originating from radioactive con-
tamination within the scintillator and OWL-fibers, pervades the whole energy
spectrum interesting for NuDoubt++ (see Figure 5.5). These gamma rays emerge
as a result of nuclear de-excitation subsequent to various decay processes. Gamma
rays with energies over about 600 keV produce indirectly Cherenkov light, as
then the energy of the Compton scattered electrons can exceed the Cherenkov
threshold.

Additionally, spallation products from cosmic muons pose a significant challenge.
This background is reducible by deep underground detector placement and coin-
cidence veto with muon parent and spallation products like neutrons. However,
the coincidence method is only effective for short-lived isotopes. Notably, 10C and
11C, created from carbon spallation, decay via β+ decay into boron isotopes. Both
isotopes fall within a similar energy range as the signal krypton decays. However,
10C decay boasts a significantly shorter half-life compared to 11C (c.f. Table 5.2).
Consequently, 10C is more readily reducible via the coincidence veto.

The decay of 11C cannot be distinguished from the 2νECβ+ decay based on event
topology in the opaque scintillator since both decays emit positrons. The maximum
kinetic energy of the positron is 0.960 MeV, overlapping with most of the energy
spectrum of the 2νECβ+ decay. Thus, discrimination using C/S ratio is not possible,
as both decays result in the creation of one positron. The influence of the K-shell
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Fig. 5.5: Expected spectrum of the gamma ray background inside the detector. The
ROI for the neutrinoless modes defined by the energy resolution is shown.

electron from the electron capture is minimal due to its low energy, leading to no
difference in the C/S ratio between 2νECβ+ and 11C.

The β+ decay of 10C occurs to an excited state of 10B, resulting in the emission of
an additional gamma ray from de-excitation. This provides an opportunity for
event identification using both topology and the C/S ratio. With a branching ratio
of 98.51 %, a gamma ray with 0.718 MeV is emitted. The positrons from this decay
have an endpoint kinetic energy of 1.903 MeV. In the less common case (1.46 %),
the gamma ray has a higher energy of 1.740 MeV, with the positron’s maximum
kinetic energy being 0.885 MeV. Due to the additional gamma, the β+ decay of 10C
produces a minimum scintillation light amount corresponding to 1.740 MeV energy
(de-excitation gamma plus two annihilation gammas), when all kinetic energy is
carried away by the neutrino. For the same total energy without neutrinos, the 10C
has a lower C/S ratio compared to a single positron emission because the additional
gamma produces Cherenkov light only when the energy of the Compton-scattered
electrons is high. However, the ratio is still higher compared to double positron
emission modes, due to the higher kinetic energy of the positron. Most of the time,
there is a gamma with 0.718 MeV and two annihilation gammas, which is less than
the energy of all four annihilation gammas in double positron events.
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Fig. 5.6: Simulation of the amount of Cherenkov photons and scintillation photons
created for several signal and background categories. 500 000 gammas
were produced, for all other event categories 10 000 events each were
simulated. A clear separation of the event categories is visible indicating
that background discrimination with this method is possible.

5.3 Simulation results for C/S-ratio

In Figure 5.6, the number of created scintillation and Cherenkov photons in the
simulation is illustrated for various decays. For the simulation of the double
beta decays, the Geant4 extension Bxdecay0 is used [70]. Notably, each event
category comprises 10 000 simulated events, although these numbers do not reflect
the actual expected rates in the detector, which can vary across different decay
modes. Only for the gamma ray background 500 000 events were simulated with
energies between 0.8 MeV and 2.9 MeV to incorporate the spectrum of them (see
Figure 5.5). Omitted from the figure is the α-decay from 210Po, as its Cherenkov
component consistently remain near zero and thus is not visually discernible. The
plot highlights the potential for discriminating between signal and background,
evident by regions devoid of background events for each signal decay.

In a real detector, not all photons generated in the decay process are measured.
For the NuDoubt++ detector, a predicted light yield of 800 PE/MeV (P.E = Photon
Equivalences) is assumed [44]. To account for this, the number of created photons
is scaled down to this value and smeared with a Poisson distribution to incorporate
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Fig. 5.7: Simulation of the event size of 511 keV annihilation gammas in the detec-
tor, when created in the middle (0,0,0). The maximum distance from the
origin is given for the z-direction (parallel to the fibers) as well as in the
x-y-plane. For both directions, the limit of the detector size is shown as
vertical line.

the efficiency of the detection process. This leads to the event categories being less
distinct.

However, it is important to note that in a real detector with a volume of approxi-
mately 1 m3, not all photons are contained within the detector volume. Gamma
rays, due to their longer travel distances because of only small energy loss in
Compton scattering processes, can traverse a significant path within the medium.
In Figure 5.7, simulated annihilation gamma events (E = 511 keV) reveal the
maximum distances in both the z-direction (parallel to the OWL-fibers) and the
x-y-plane from the origin. While all simulated gamma events are contained within
the 1.1 m detector length in the z-direction, only 79 % of the gammas are contained
within the 0.55 m detector radius. Conversely, electrons and positrons, as well as
α particles traverse much shorter paths within the detector (∼ cm). Consequently,
the scintillation and Cherenkov light emitted by these particles remain contained
within the detector, barring events occurring really close to the detector limit.

Although there is a loss of scintillation light due to this effect, it is overlooked in
this study as the energy, and thus the expected number of scintillation photons,
can be reconstructed by considering only the first two Compton scatter blobs.
Remarkably, in 99 % of events where gammas originate from the middle, these
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two blobs are contained inside the detector volume.
By incorporating the OWL-fiber and SiPM efficiency (Figure 5.8), the distinc-
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Fig. 5.8: Expected amount of measured photons for several signal and background
categories, assuming a light yield of 800 PE/MeV. 500 000 gammas were
produced, for all other event categories 10 000 events each were simu-
lated.

tiveness of event categories diminishes compared to during their creation. Nev-
ertheless, it appears feasible to identify events based on their Cherenkov and
scintillation light levels. In this figure, also the importance of effectively reducing
the presence of the two carbon isotopes for detecting the two-neutrino modes
becomes clear, given their overlap with the signal in many parts.

5.4 Influence of time resolution on the C/S-ratio

As detailed in Section 5.1, the time resolution assumed for the NuDoubt++ detector
enables the distinction of Cherenkov and scintillation photons within the measured
light. However, due to the significant overlap in the time spectra of Cherenkov
and scintillation light, their ratio can only be reconstructed with limited precision.
Given a measured total number of photons, it is necessary to determine how
accurately one can reconstruct the ratio of scintillation light to Cherenkov light.
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The reconstruction performance is quantified using the Asimov approach, as ex-
plained in Section 4.6.3. Each data point in Figure 5.8 represents a measurement
where the total number of measured photons is the sum of Cherenkov and scintil-
lation light. The challenge is to reconstruct the C/S ratio, given that only the total
number and the time distribution of photons are measured. Thus, the only fit
parameter is the scintillation ratio r. The energy uncertainty is already applied in
Figure 5.8.

The following function is fitted to the time distribution:

N(t,M |r) = (1− r) ·M ·NCherenkov(t) + r ·M ·NScintillation(t) , (5.9)

where r is the ratio of scintillation light in the total number of measured photons
M . NCherenkov(t) and NScintillation(t) represent the normalized time distributions
of Cherenkov and scintillation light in the detector (Equation 5.6). The optimal
parameter is obtained by minimizing the χ2 with respect to r:

χ2(r) =
∑
i

(xi − µi)
2

σ2
i

=
∑
i

(N(ti, rtrue)−N(ti, r))
2

σ2
i

. (5.10)

Here, N(ti, rtrue) is the Asimov data set, constructed with the true parameter rtrue.
N(ti, r)) is the distribution for different parameter values r, for which one wants
to check the chi-squared value. For σi the Poisson uncertainty of N(ti, r)) is taken:
σi =

√
N(ti, r)). The time distribution is binned in time with a bin size of 5 ps.

Instead of fitting randomly generated pseudo-experiments, in the Asimov approach
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Fig. 5.9: χ2 for different fraction of scintillation photons with a fixed total number
of 2000 photons. In the Asimov approach, the minimum is at the true
parameter.
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Fig. 5.10: Number of Cherenkov and scintillation photons from the reconstructed
ratio. For some combinations of S and C, the 68 % confidence interval is
shown with the black lines to get an estimate of the influence.

the exact model predictions are used. By construction, the minimum χ2 is at
the true value, with a χ2 value of 0. The ratio where χ2 = 1 provides the 68 %
confidence interval, which is used to estimate the uncertainty. In Figure 5.9 the
shape of the χ2 is shown for a fixed number of measured photons M = 2000 and
a true ratio of r = 0.95. For this combination, the number of Cherenkov photons
can be constrained within 10 % of the true value. This approach is applied to each
data point in Figure 5.8. To obtain the reconstructed data, values are randomly
sampled from a Gaussian distribution with the true ratio as mean and the 68 %
confidence interval as standard deviation. This results in a slight smoothing of
event categories, but the overall smearing is minimal due to the efficient C/S
separation.

5.5 Event classification

The events are classified to the different event categories using a machine learning
technique, explained in Section 5.5.1. Classification means, that for a measured
number of Cherenkov and Scintillation one wants to predict with which probability
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the event comes from which category. The performance of this classification is
examined in Section 5.5.2.

5.5.1 Gradient Boosted Decision Trees

There are a lot of different machine learning techniques for classification tasks.
One common method are Gradient Boosted Decision Trees (GBDT) [91]. They
combine the strengths of decision trees with the boosting algorithm, resulting in
an efficient method for predicting categorical outcomes. It combines the outputs
of many smaller decision trees. The process starts with an initial prediction, then
sequentially adds trees to correct the errors of previous predictions. By iteratively
refining its predictions, GBDT produces a accurate final model.

In this analysis, the implementation from Scikit-Learn is used [92]. There are
many options to optimize the training of the decision tree leading to better results.
Here, no optimization is conducted, but rather the default options from the imple-
mentation are used. For each of the four signal events (2νβ+β+, 2νECβ+, 0νβ+β+,
0νECβ+), a decision tree is trained using 2 000 000 simulated gamma events and
100 000 each from the other categories. The signal always has the classifier 1 and
all other events have the classifier 0.

5.5.2 Classification performance

The classification performance of the GBDT is evaluated using simulation data
not included in the training set. Specifically, 750 000 gamma events and 100 000
events from each of the other categories are used for this evaluation. For each
signal decay, a specific range of scintillation photons (and consequently energy)
is defined for consideration, as events significantly outside the signal region are
irrelevant and never classified as signal. Due to the quenching effect, the two
neutrinoless modes have different ranges of scintillation photons. The cut values
are determined by binning the energy with a bin size matching the energy resolu-
tion, and then converting this into the number of scintillation photons. For both
neutrinoless modes, there were two bins containing almost all events, so these
two bins were chosen. For the two-neutrino modes, the same upper bounds were
applied, with the lower bound set at the first bin containing an event from this de-
cay channel. For each simulated event, the GBDT outputs probabilities indicating
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Tab. 5.3: Region of scintillation photons considered for the different decays.

Decay Minimum Maximum
2νβ+β+ 1422 2203
2νECβ+ 731 2249
0νβ+β+ 2113 2203
0νECβ+ 2158 2249

whether the event belongs to the signal or background. By applying thresholds
based on these probabilities, a receiver operating characteristic (ROC) curve can
be generated. In these ROC curves, the x-axis (logarithmic scale for improved
visualization) represents the false positive rate (the fraction of background events
incorrectly classified as signal), while the y-axis represents the true positive rate
(signal efficiency, or the fraction of signal events correctly classified as signal). For
comparison, 1:1 lines are also shown, representing the performance of a random
classifier.

The ROC-curves for the four different signal event categories are shown in Fig-
ure 5.11. The classification performance for 2νECβ+ and 0νECβ+ is less effective,
as indicated by their lower area under curve (AOC) values of 0.94 and 0.93, re-
spectively. A perfect classifier would have a AUC of 1, so a higher AUC signifies a
better classifier. High signal efficiencies in the EC channels lead to significantly
higher background rates compared to double positron decays. This is expected
because the C/S ratio of 2νECβ+ completely overlaps with both the 11C decay and
the gamma background at low energies (see Figure 5.10). Additionally, 0νECβ+

overlaps with the gamma ray background.

To determine the optimal cut probability for the signals, one must examine the sen-
sitivity. The sensitivity for a signal with S events in the presence of B background
events is given by:

σ =
ϵSS√
ϵBB

, (5.11)

where ϵS is the signal efficiency (true positive rate) and ϵB is the false positive rate.
Since the number of signal and background events (S and B) is independent from
the cut value, maximizing the sensitivity involves finding the point on the ROC
curve where

ϵS√
ϵB

(5.12)

is maximized. To account for the varying rates of different background event
categories in the detector, the total false positive rate ϵB is calculated by summing

5.5 Event classification 71



10 5 10 3 10 1

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 p

os
iti

ve
 ra

te

AUC = 0.9928

2 + +

1:1 line

(a) 2νβ+β+

10 4 10 3 10 2 10 1 100

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

AUC = 0.9929

0 + +

1:1 line

(b) 0νβ+β+

10 4 10 3 10 2 10 1 100

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

 

AUC = 0.9464

2 EC +

1:1 line

(c) 2νECβ+

10 4 10 3 10 2 10 1 100

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

AUC = 0.9273

0 EC +

1:1 line

(d) 0νECβ+

Fig. 5.11: ROC curves for the four signal event categories in the detector. The false
positive rate is given in a logarithmic scale. For comparison, the 1:1 lines
are shown in gray.

the false positive rates from all background contributions, each weighted by their
expected rate Ri:

ϵB =
∑
i

ϵB,i ∗Ri = ϵB,γ ∗Rγ + ϵB,C−10 ∗RC−10 + ... . (5.13)

The sum of allRi is normalized to one, as only the relative differences in occurrence
of the categories is considered not their absolute values. This approach ensures that
a background category with a high false positive rate but low relative occurrence
is less impactful on sensitivity than one with a high rate in the detector. The rates
are taken from [44, 93, 94].

The maximization is illustrated in Figure 5.12. As only the efficiency values are
considered for finding the maximum and not the number of signal and background
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Fig. 5.12: The ratio of ϵS√
ϵB

as a function of signal efficiency. The maxima positions
are indicated with vertical lines. Several lines of constant ϵB are shown
in gray.

events, the absolute scale of the y-axis has no meaning for the actual sensitivity,
which can be achieved. The optimal value for the two-neutrino modes are at lower
signal efficiencies. For 2νECβ+, it is at a signal efficiency of only 9 %. For 2νβ+β+ it
is higher, at 31 %. In contrast, for the neutrinoless modes, the optimal values are
even higher, around 80 %.

In Figure 5.13, the false positive rate for each background source is plotted against
the true positive rate for the different decays. The false positive rate for each
background is calculated by dividing the number of events misclassified as signal
by the total number of events in that background category. This provides an
estimate of which backgrounds are most problematic. Additionally, the horizontal
red line indicates the optimal signal efficiency calculated before.

The two-neutrino modes consistently contribute background to the neutrinoless
modes and vice versa. However, because the predicted rates of neutrinoless
modes are several orders of magnitude lower than those of two-neutrino modes,
the background from neutrinoless decay in two-neutrino searches is negligible.
In the neutrinoless double beta decay mode, the background rate from 10C is
approximately 4 × 10−2, whereas for the electron capture case, it is slightly lower at
3 × 10−2. The reduction of gamma ray background is highly effective in the double
beta mode, achieving a rate as low as 7 × 10−4. This contrasts with the neutrinoless
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electron capture mode, where the gamma background rate is almost three orders
of magnitude higher (52 %). For 0νβ+β+, in addition to the corresponding two-
neutrino, there is a small contribution from the neutrinoless electron capture
mode. In 0νECβ+, there is also background from solar neutrinos, but this can be
lowered to a rate of 5 × 10−2 as the scattered electrons in the detector produce
typically high amounts of Cherenkov light. For the 2νβ+β+ decay modes, the most
significant background contribution comes from 11C. Apart from this, the only
other notable contribution is from the neutrinoless mode, indicating that this
decay offers good opportunities for background discrimination, mainly because
the gamma rays produce more Cherenkov light than the signal. In contrast, for
the 2νECβ+ decay, achieving high signal efficiencies requires tolerating relatively
high background rates due to significant overlap with gamma rays and 11C. At the
optimal cut value, which corresponds to a very low signal efficiency of just 9 %, the
rates of background from both carbon isotopes and gamma rays are minimized to
around 10−3. While both neutrinoless modes also contribute to the background,
their impact is negligible due to their low rates.

Overall, the main difference between the double beta mode and the electron
capture mode is the much better gamma ray discrimination in the former, as these
signals produce less Cherenkov light. It is evident that 10C presents a significant
background for all decay modes, emphasizing the importance of effective veto
systems and substantial overburden for shielding. Furthermore, maintaining
high radiopurity in the OWL-fibers and all materials used within the detector is
crucial, as gamma ray background is particularly problematic in electron capture
modes.

To determine the actual sensitivity of the experiment for the various double beta
decay modes, it is necessary to consider the different expected event rates as well
as the measurement run time. The signal rate also depends on how much krypton
is loaded into the scintillator, which depends on the pressure during loading
and the rate of isotope enrichment. In addition to using Cherenkov scintillation
background discrimination, further discrimination based on the topology provided
by the opaque scintillator is possible.

The simulation studies indicate that event classification using the C/S ratio, fac-
toring in the time resolution of NuDoubt++ , is effective. However, there are
significant differences in the performance across the double beta decay modes
targeted by the detector. The 0νβ+β+ mode has demonstrated the greatest potential
for background discrimination.
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Fig. 5.13: False positive rates of the individual background sources depending on
the signal efficiency.
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Conclusion 6
In this thesis, a simulation of the NuDoubt++ detector was developed using the
Geant4 simulation toolkit. This simulation offers the possibility to propagate
particles through the opaque scintillator. The study primarily focused on the
properties of the scintillator and the geometry of the detector, so spherical light
sources were used as photon sources instead of directly simulating particles such
as electrons or positrons. The processes of wavelength shifting within the OWL-
fibers, photon propagation through the fibers, and detection by the SiPM were
not simulated. This simplification was made because the OWL-fibers are still in
development. Future work will include these processes in the simulation for more
precise modeling of the detector. Nevertheless, the simplified version already
provides a good opportunity to study the behavior in the opaque scintillator
detector.

A position and energy reconstruction for photon bombs (photons starting from one
point), based on likelihood using interpolation methods, was implemented. For
a dense fiber grid, this reconstruction achieves a position resolution of 0.27 mm
for 1 MeV photon bombs. The z-position, so the axis along which the fibers are
aligned, is not reconstructed but can be included by taking the time difference
between upper and lower SiPM of a fiber.
A photon number resolution of 4 % at 1 MeV is obtained. The resolution is defined
as the 50 % interquartile range. The study demonstrated that the resolution signifi-
cantly deteriorates with increased fiber spacing and larger scattering lengths. The
absorption length as well as the fiber radius only have a minor influence in the
investigated range. While the current interpolation-based reconstruction yields
good results, further improvements may be possible by replacing the interpolation
with e.g. a neural network.
In this thesis, photon bombs were simulated and reconstructed, where all photons
originate from one point. Electrons or positrons rather leave a short track of sev-
eral millimeters in the scintillator. Photons additionally produce several regions
of scintillation light in the scintillator due to the Compton scattered electrons from
the annihilation gammas. The reconstruction is not particularly suited for such
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events, but can be expanded by allowing a short track in the reconstruction. For
positrons and gammas, several photon bombs have to be considered.

Additionally, the potential for background discrimination using the hybrid scintil-
lator was explored. The time resolution of the detector was approximated through
theoretical assumptions and simulation results, indicating the capability to sepa-
rate Cherenkov and scintillation light. Different background events for the double
beta decays of 78Kr were simulated. A Gradient Boosted Decision Tree (GBDT)
classifier was used to test the background discrimination with the C/S ratio. No-
tably, for the neutrinoless double beta decay modes, significant discrimination
was achieved for the double positron channel, reducing the high gamma ray back-
ground from radioactivity in the fibers and detector material by a factor of more
than 1000. For the electron capture mode, the reduction is much smaller. Here,
the factor is less than 2, suggesting that background discrimination in this case
must rely heavily on topological discrimination which should be investigated in
future studies. For all modes, efficient discrimination of the spallation-induced
10C decay is accomplished.

Further improvement in background discrimination could be achieved by analyz-
ing the Cherenkov to scintillation ratio for each fiber individually. The Cherenkov
light distribution varies for different particles: positron events, which do not pro-
duce Cherenkov light via annihilation gammas, show Cherenkov light confined
near the particle creation site (from the ionization tail of the positron itself). In
contrast, higher energy gammas produce Cherenkov light at multiple locations
due to Compton scattered electrons with high enough energy. Future research
should investigate the combined discrimination potential of topology, the overall
Cherenkov to scintillation ratio, and the ratio for each fiber individually to fully
explore the capabilities of the NuDoubt++ experiment.
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